Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimi...Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimization sub-problems within the MPC framework,eliminating the dynamic constraints in solving the optimal control problem and enhancing the convergence performance of the algorithm.Moreover,this method can repeatedly perform trajectory optimization calculations at a high frequency,achieving timely correction of the optimal control command.Numerical simulations demonstrate that the method can satisfy the requirements of rapid computation and reliability for the MAV system when considering uncertainties and perturbations.展开更多
As the Mars probe,which has limited on-board ability in computation is unable to carry out the large-scale landmark solution,it is necessary to achieve optimal selection of landmarks while ensuring autonomous navigati...As the Mars probe,which has limited on-board ability in computation is unable to carry out the large-scale landmark solution,it is necessary to achieve optimal selection of landmarks while ensuring autonomous navigation accuracy during landing phase.This paper proposes an optimal landmark selection method based on the observability matrix for the Mars probe.Firstly,an observability matrix for navigation system is constructed with Fisher information quantity.Secondly,the optimal configuration of the landmark distribution is given by maximizing the scalar function of the observability matrix.Based on the optimal configuration,the greedy algorithm is used to determine the number of the landmarks at each moment adaptively.In addition,considering the fact that the number of the observable landmarks gradually decreases during the landing process,the convergence threshold of the greedy algorithm is set to a dynamic value regarding landing time.Finally,mathematical simulation verification is conducted,and the results show that the proposed optimal landmark selection method has higher navigation accuracy compared with the random landmark selection method.It can effectively suppress the influence of the measurement model errors and achieve a higher landing accuracy.展开更多
The cryosphere component provides the most reliable and insightful indications of any planet’s climate dynamics.Using data from the Compact Reconnaissance Imaging Spectrometer for Mars(CRISM),we develop a novel appro...The cryosphere component provides the most reliable and insightful indications of any planet’s climate dynamics.Using data from the Compact Reconnaissance Imaging Spectrometer for Mars(CRISM),we develop a novel approach to determining the broadband Visible and Near Infrared(VNIR)albedo of the Martian surface.This study focuses on albedo changes in the McMurdo crater,part of Mars’s south polar layer deposits.We compare seasonal and interannual variations of the McMurdo surface albedo before,during,and after the Global Dust Storm(GDS)of Martian Year(MY)34.As the seasons progressed from spring to summer,the mean albedo in MY 32 and 34 plunged by over 40%,by about 35%in MY 33,and by slightly more than 30%in MY 35.Compared interannually,however,mean albedo values within both seasons(spring and summer)exhibited no significant differences in those same years.Notably,interannual albedo difference maps reveal albedo variation of more than±0.3 in certain regions of the crater.Considering only snow-covered pixels,interannual albedo differences suggest that Mars dust had a pervasive impact on Mars’s cryosphere.Variations in maximum and minimum albedo values as high as 0.5 were observed,depending upon differences in the dust levels in Martian snow/ice.The maximum and the minimum snow albedo values were lowest in MY 34,indicating the effect of the intense dust storm event that year.The average snow albedo decreased from 0.45 in MY 32 to 0.40 in MY 33 and to 0.33 in MY 34,and then rose back to 0.40 in MY 35.This trajectory suggests a temporary deposition of dust,partially reversed after the GDS by self-cleaning mechanisms(local aeolian process and CO_(2)sublimation/deposition cycle).展开更多
In this study, we present an innovative Mars Ionosphere-Thermosphere Model(MITM), which is a time-dependent, threedimensional(3-D) model that comprehensively represents the self-consistently coupled thermosphere and i...In this study, we present an innovative Mars Ionosphere-Thermosphere Model(MITM), which is a time-dependent, threedimensional(3-D) model that comprehensively represents the self-consistently coupled thermosphere and ionosphere of Mars within the altitude range of 70-300 km. The model incorporates an extensive range of parameters, including neutral number densities of CO_(2), CO,O, O_(2), N_(2), NO, N(^(2)D), N(^(4)S), Ar, and He;ion number densities of CO_(2)^(+), CO^(+), O^(+), O_(2)^(+), N_(2)^(+), NO^(+), N^(+) ions, and electrons;neutral temperature;and neutral wind fields. The MITM code employs a high-resolution grid system in a spherical geographical coordinate system, with a horizontal resolution of 5° latitude by 7.5° longitude. This altitude-resolved grid system enables accurate depiction of spatial variations in the Martian thermosphere and ionosphere. To showcase the capabilities of the MITM, we present two simulation cases: one during the equinox and another during the solstice. Both simulations reproduce key features of the Martian thermosphere and ionosphere including the characteristics of horizontal circulation, diurnal variations in chemical composition, and distribution of electron density. The MITM offers a robust framework for understanding the intricate interactions and processes that shape the Mars thermosphere and ionosphere,which are crucial for enhancing our understanding of Martian upper atmosphere and ionosphere.展开更多
The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,suc...The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,such as ticks and glitches,which hamper further seismological studies.This paper presents step-by-step processing of InSight’s Very Broad Band seismic data,focusing on the suppression and removal of non-seismic noise.The processing stages include tick noise removal,glitch signal suppression,multicomponent synchronization,instrument response correction,and rotation of orthogonal components.The processed datasets and associated codes are openly accessible and will support ongoing efforts to explore the geophysical properties of Mars and contribute to the broader field of planetary seismology.展开更多
1 A possible ancient shoreline has been found in the region of Mars explored by the Chinese rover,Zhurong,providing further evidence that an ocean may once have covered a vast area of the lowlands in the planet's ...1 A possible ancient shoreline has been found in the region of Mars explored by the Chinese rover,Zhurong,providing further evidence that an ocean may once have covered a vast area of the lowlands in the planet's northern part.2 The rover landed in southern Utopia Planitia in May 2021 and remained active for almost a year.Researchers studying data from the rover have found clues of an ancient ocean or liquid water as recently as 400,000 years ago.展开更多
基金supported by the National Defense Basic Scientific Research Program(JCKY2021603B030)the National Natural Science Foundation of China(62273118,12150008)the Natural Science Foundation of Heilongjiang Province(LH2022F023).
文摘Dear Editor,This letter proposes a convex optimization-based model predictive control(MPC)autonomous guidance method for the Mars ascent vehicle(MAV).We use the modified chebyshev-picard iteration(MCPI)to solve optimization sub-problems within the MPC framework,eliminating the dynamic constraints in solving the optimal control problem and enhancing the convergence performance of the algorithm.Moreover,this method can repeatedly perform trajectory optimization calculations at a high frequency,achieving timely correction of the optimal control command.Numerical simulations demonstrate that the method can satisfy the requirements of rapid computation and reliability for the MAV system when considering uncertainties and perturbations.
基金supported by the National Natural Science Foundation of China(62203458)the Stabilisation Support Project of the Bureau of Science and Industry(HTKJ2023KL502012)the Youth Autonomous Innovation Science Fund(ZK23-01).
文摘As the Mars probe,which has limited on-board ability in computation is unable to carry out the large-scale landmark solution,it is necessary to achieve optimal selection of landmarks while ensuring autonomous navigation accuracy during landing phase.This paper proposes an optimal landmark selection method based on the observability matrix for the Mars probe.Firstly,an observability matrix for navigation system is constructed with Fisher information quantity.Secondly,the optimal configuration of the landmark distribution is given by maximizing the scalar function of the observability matrix.Based on the optimal configuration,the greedy algorithm is used to determine the number of the landmarks at each moment adaptively.In addition,considering the fact that the number of the observable landmarks gradually decreases during the landing process,the convergence threshold of the greedy algorithm is set to a dynamic value regarding landing time.Finally,mathematical simulation verification is conducted,and the results show that the proposed optimal landmark selection method has higher navigation accuracy compared with the random landmark selection method.It can effectively suppress the influence of the measurement model errors and achieve a higher landing accuracy.
基金support from the Indian Institute of Technology Bombay (IITB) for providing the necessary facility and IITB seed grant.
文摘The cryosphere component provides the most reliable and insightful indications of any planet’s climate dynamics.Using data from the Compact Reconnaissance Imaging Spectrometer for Mars(CRISM),we develop a novel approach to determining the broadband Visible and Near Infrared(VNIR)albedo of the Martian surface.This study focuses on albedo changes in the McMurdo crater,part of Mars’s south polar layer deposits.We compare seasonal and interannual variations of the McMurdo surface albedo before,during,and after the Global Dust Storm(GDS)of Martian Year(MY)34.As the seasons progressed from spring to summer,the mean albedo in MY 32 and 34 plunged by over 40%,by about 35%in MY 33,and by slightly more than 30%in MY 35.Compared interannually,however,mean albedo values within both seasons(spring and summer)exhibited no significant differences in those same years.Notably,interannual albedo difference maps reveal albedo variation of more than±0.3 in certain regions of the crater.Considering only snow-covered pixels,interannual albedo differences suggest that Mars dust had a pervasive impact on Mars’s cryosphere.Variations in maximum and minimum albedo values as high as 0.5 were observed,depending upon differences in the dust levels in Martian snow/ice.The maximum and the minimum snow albedo values were lowest in MY 34,indicating the effect of the intense dust storm event that year.The average snow albedo decreased from 0.45 in MY 32 to 0.40 in MY 33 and to 0.33 in MY 34,and then rose back to 0.40 in MY 35.This trajectory suggests a temporary deposition of dust,partially reversed after the GDS by self-cleaning mechanisms(local aeolian process and CO_(2)sublimation/deposition cycle).
基金This work is supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB4100000)the pre-research Project on Civil Aerospace Technologies No. D020105 funded by CNSAthe Strategic Priority Research Program of Chinese Academy of Sciences (Grant XDA17010404, XDA17010201)。
文摘In this study, we present an innovative Mars Ionosphere-Thermosphere Model(MITM), which is a time-dependent, threedimensional(3-D) model that comprehensively represents the self-consistently coupled thermosphere and ionosphere of Mars within the altitude range of 70-300 km. The model incorporates an extensive range of parameters, including neutral number densities of CO_(2), CO,O, O_(2), N_(2), NO, N(^(2)D), N(^(4)S), Ar, and He;ion number densities of CO_(2)^(+), CO^(+), O^(+), O_(2)^(+), N_(2)^(+), NO^(+), N^(+) ions, and electrons;neutral temperature;and neutral wind fields. The MITM code employs a high-resolution grid system in a spherical geographical coordinate system, with a horizontal resolution of 5° latitude by 7.5° longitude. This altitude-resolved grid system enables accurate depiction of spatial variations in the Martian thermosphere and ionosphere. To showcase the capabilities of the MITM, we present two simulation cases: one during the equinox and another during the solstice. Both simulations reproduce key features of the Martian thermosphere and ionosphere including the characteristics of horizontal circulation, diurnal variations in chemical composition, and distribution of electron density. The MITM offers a robust framework for understanding the intricate interactions and processes that shape the Mars thermosphere and ionosphere,which are crucial for enhancing our understanding of Martian upper atmosphere and ionosphere.
基金supported by the National Key R&D Program of China(Nos.2022YFF 0503203 and 2024YFF0809900)the Research Funds of the Institute of Geophysics,China Earthquake Administration(No.DQJB24X28)the National Natural Science Foundation of China(Nos.42474226 and 42441827).
文摘The InSight mission has obtained seismic data from Mars,offering new insights into the planet’s internal structure and seismic activity.However,the raw data released to the public contain various sources of noise,such as ticks and glitches,which hamper further seismological studies.This paper presents step-by-step processing of InSight’s Very Broad Band seismic data,focusing on the suppression and removal of non-seismic noise.The processing stages include tick noise removal,glitch signal suppression,multicomponent synchronization,instrument response correction,and rotation of orthogonal components.The processed datasets and associated codes are openly accessible and will support ongoing efforts to explore the geophysical properties of Mars and contribute to the broader field of planetary seismology.
文摘1 A possible ancient shoreline has been found in the region of Mars explored by the Chinese rover,Zhurong,providing further evidence that an ocean may once have covered a vast area of the lowlands in the planet's northern part.2 The rover landed in southern Utopia Planitia in May 2021 and remained active for almost a year.Researchers studying data from the rover have found clues of an ancient ocean or liquid water as recently as 400,000 years ago.