1.Introduction To design novel architectures with unique properties that surpass those of natural matter,scientists have developed diverse structures/materials by incorporating artificial structures of periodic/aperio...1.Introduction To design novel architectures with unique properties that surpass those of natural matter,scientists have developed diverse structures/materials by incorporating artificial structures of periodic/aperiodic nano-,micro-,and macro-scale,so called metamaterials.展开更多
Monitoring of frozen soil hydrology in macro-scale was performed by Chinese and Japanese scientists from 1997 to 1998. Quality measured data were obtained. Measured data on soil moisture and temperature are preliminar...Monitoring of frozen soil hydrology in macro-scale was performed by Chinese and Japanese scientists from 1997 to 1998. Quality measured data were obtained. Measured data on soil moisture and temperature are preliminarily analyzed. Based on profiles of soil temperature and moisture in individual measured sites, intra-annual freezing and melting process of soil is discussed. Maximum frozen and thawed depths and frozen days in various depths are estimated. The work emphasized the spatial distribution on soil temperature and moisture in macro-scale and the effect of topography on conditions of soil water and heat.展开更多
基金financially supported by the National Key Research and Development Program of China(2023YFB4604800)the National Natural Science Foundation of China(52275331)financial support from the Hong Kong Scholars Program(XJ2022014)。
文摘1.Introduction To design novel architectures with unique properties that surpass those of natural matter,scientists have developed diverse structures/materials by incorporating artificial structures of periodic/aperiodic nano-,micro-,and macro-scale,so called metamaterials.
文摘Monitoring of frozen soil hydrology in macro-scale was performed by Chinese and Japanese scientists from 1997 to 1998. Quality measured data were obtained. Measured data on soil moisture and temperature are preliminarily analyzed. Based on profiles of soil temperature and moisture in individual measured sites, intra-annual freezing and melting process of soil is discussed. Maximum frozen and thawed depths and frozen days in various depths are estimated. The work emphasized the spatial distribution on soil temperature and moisture in macro-scale and the effect of topography on conditions of soil water and heat.