The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regul...The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health.展开更多
基金supported by grants from Simons Foundation (SFARI 479754),CIHR (PJT-180565)the Scottish Rite Charitable Foundation of Canada (to YL)funding from the Canada Research Chairs program。
文摘The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health.