Long-range ordered nanostructures are prepared in the poly(styrene)-block-poly(e-caprolactone) diblock copolymer thin films using micromolding. We evaluated the change in crystallinity based on grazing-incidence X...Long-range ordered nanostructures are prepared in the poly(styrene)-block-poly(e-caprolactone) diblock copolymer thin films using micromolding. We evaluated the change in crystallinity based on grazing-incidence X-ray diffraction and proved that the crystallinity increased with the decrease of the mold size. This means that ordered nanostructures with atomic length scale order can be adjusted by tuning the mesoscale confinement. The inherent mechanism was the cooperation of geometric confinement, microphase structure and surface-induced ordering of PS-b-PCL in the melt, which paved the way for the subsequent crystal growth. These findings establish a route to promote the cost-effective nanofabrication by combining the mature microfabrication technique with the emerging directed self-assembly of block copolymers.展开更多
By applying Bogoliubov's ineguality to double-exchange(DE) ladders, we show that the ferromagnetic(FM) order is absent in the new DE systems at finite temperatures. The incorporation of Jahn-Teller electron-phonon...By applying Bogoliubov's ineguality to double-exchange(DE) ladders, we show that the ferromagnetic(FM) order is absent in the new DE systems at finite temperatures. The incorporation of Jahn-Teller electron-phonon coupling, orbital degeneracy and on-site Coulomb interaction with the DE interaction do not preserve these orders. The long-wavelength thermal fluctuations of the spins oversome the DEFM correlation and destroy the FM orders. The implication of the absence of FM order on the transport of the DE ladders is discussed.展开更多
The study of temperature-driven phase transitions is significant in phosphate chemistry,as these transitions often lead to unique physical properties for specific applications,such as catalysis,energy storage,ion cond...The study of temperature-driven phase transitions is significant in phosphate chemistry,as these transitions often lead to unique physical properties for specific applications,such as catalysis,energy storage,ion conduction,and nonlinear optics[1–3].The phase transition from room temperature(RT)to high temperature(HT)in phosphates is always from periodic structures to disordered or amorphous states[4–8].At RT,phosphates often maintain a highly ordered crystalline structure,which is stabilized by the lower thermal energy.As the temperature increases,the thermal energy disrupts the periodic arrangement of atoms and leads to a phase transition,where the once ordered structure becomes increasingly disordered or even amorphous.展开更多
Long-range magnetic order appears on a side decorated Heisenberg spin nanoribbon at nonzero temperature,although no spontaneous magnetization exists in a one-or two-dimensional isotropic Heisenberg model at any nonzer...Long-range magnetic order appears on a side decorated Heisenberg spin nanoribbon at nonzero temperature,although no spontaneous magnetization exists in a one-or two-dimensional isotropic Heisenberg model at any nonzero temperature according to the Mermin-Wagner theorem.By use of the spin Green's function method,we calculated the magnetizations of Heisenberg nanoribbons decorated by side spins with single-ion anisotropy and found that the system exhibits a nonzero transition temperature,whether the decorated edge spins of the system link together or separate from each other.When the width of the nanoribbon achieves infinite limit,the transition temperatures of the system tend to the same finite constant eventually whether one edge or both edges are decorated by side spins in the nanoribbon.The results reveal that the magnetism of a low-dimensional spin system is different from that of a threedimensional spin system.When the single-ion anisotropy of edge spins in a Heisenberg spin nanoribbon can be modulated by an electric field experimentally,various useful long-range magnetic orders of the system can be obtained.This work can provide a detailed theoretical basis for designing and fabricating next-generation low-dimensional magnetic random-access memory.展开更多
Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped...Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped carbons(Co-NC)are implanted with densely-distributed Co single atoms,and supported on Ti_(3)C_(2)T_(x)MXene substrates to assemble 3D Co-NC/MXene catalyst.MXene effectively mediates interlayer charge transfer(~0.70|e|)contrasted with popular carbon materials(~0.06|e|)to produce LRER through surrounding carbon atoms.The synergy of LRER with near-range electronic regulation(NRER)tunes electronic structures,and enhances heterostructural stability,thus provoking desirous catalytic kinetics of Co single atoms in sulfur reduction.Thereby,the Co-NC/MXene/S cathodes exhibit impressive rate performance and excellent cycling stability(only 0.015%capacity decay per cycle over 600 cycles at 4 C)in LSBs,surpassing state-of-the-art sulfur cathodes.This work reveals the importance of LRER for improved catalysis,and provides new guidance to tailor heterostructures to achieve high-efficient catalysts in various process.展开更多
Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration ...Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration of the inherent characteristics of active sites within diverse coordination environments holds great significance for the experimental design of catalytic structures.Single-atom catalysts(SACs)characterized by high coordination with four carbons(26 candidates)and low coordination with dinitrogen(27candidates)are constructed using nitrogen-doped graphdiyne derivatives(NGDY)as the substrate.Additionally,5 species of dual-atom catalysts(DACs)with coexistence of both high and low coordination sites are also developed and their nitrogen reduction reaction(NRR)activities are systematically investigated by density functional theory.The results indicate that metals with low coordination exhibit superior catalytic performance,such as Mo^(L)-NGDY(U_(L)=-0.30 V)and Nb^(L)-NGDY(U_(L)=-0.32 V).Furthermore,machine learning(ML)methods have deeply analyzed and elucidated the primary intrinsic characteristics that influence catalytic performance.These results not only unveil the underlying mechanisms behind the exceptional catalytic performance exhibited by low-coordination metal atoms,but also provide relevant and significant descriptors.More importantly,based on an investigation of the catalytic activity of a series of DACs,the“buffer and low-coordination accumulate”asymmetric coordination mechanism is proposed to unveil the long-range interactions between low and high coordination atoms.Due to this remote communication,MoNb-NGDY(U_(L)=-0.09/-0.37 V)exhibits the best NRR activity.This mechanism provides valuable insights into the origin of long-range bipartite interactions and inspires the design and synthesis of NRR catalysts with different coordination environments.展开更多
Consecutive stresses,such as initial submergence during germination followed by water deficit during the seedling stage,pose significant challenges to direct-seeded rice cultivation.By Linkage disequilibrium analysis,...Consecutive stresses,such as initial submergence during germination followed by water deficit during the seedling stage,pose significant challenges to direct-seeded rice cultivation.By Linkage disequilibrium analysis,Sub1 and Dro1(Δbp:10 Mb),as well as Sub1 and TPP7(Δbp:6 Mb)were identified to exhibit long-range linkage disequilibrium(LRLD).Meta-QTL analysis further revealed that Sub1 and TPP7 co-segregated for tolerance to submergence at the germination and seedling stages.Based on this,we hypothesized that LRLD might influence plant responses to consecutive stresses.To test this hypothesis,we developed a structured recombinant inbred line population from a cross between Bhalum 2 and Nagina 22,with alleles(Sub1 and TPP7)in linkage equilibrium.Mendelian randomization analysis validated that the parental alleles,rather than the recombinant alleles of Sub1 and TPP7,significantly influenced 13 out of 41 traits under consecutive stress conditions.Additionally,16 minor additive effect QTLs were detected between the genomic regions,spanning Sub1 and TPP7 for various traits.A single allele difference between these genomic regions enhanced crown root number,root dry weight,and specific root area by 11.45%,15.69%,and 33.15%,respectively,under flooded germination conditions.Candidate gene analysis identified WAK79 and MRLK59 as regulators of stress responses during flooded germination,recovery,and subsequent water deficit conditions.These findings highlight the critical role of parental allele combinations and genomic regions between Sub1 and TPP7 in regulating the stress responses under consecutive stresses.Favourable haplotypes derived from these alleles can be utilized to improve stress resilience in direct-seeded rice.展开更多
The relationship between the structural stability and the long-range-order parameter of stoichiometry NiAl has been studied using effective atom model based on the embedded-atom-method(EAM) potential. The results obta...The relationship between the structural stability and the long-range-order parameter of stoichiometry NiAl has been studied using effective atom model based on the embedded-atom-method(EAM) potential. The results obtained from the computation show that NiAl lacks a metastable disordered structure intrinsically, and has the stable ordered B2 phase,which are consistent with experimental results.展开更多
It is shown that in the quantum structural approach to high-Tc superconductivity, the wave function in terms of the alternate molecular bonding geminals possesses off-diagonal long-range order (ODLRO).
Molecular dynamics(MD)simulations and anisotropic thermal diffusion dynamics(ATD)simulations were performed on the wild TrpR and its 75 residue mutant(mTrpR)to investigate TrpR longrange effects.The ATD result shows t...Molecular dynamics(MD)simulations and anisotropic thermal diffusion dynamics(ATD)simulations were performed on the wild TrpR and its 75 residue mutant(mTrpR)to investigate TrpR longrange effects.The ATD result shows that the mTrpR has higher fluctuation than the wild TrpR,and its helix chainⅡF has particular disorder.It is obvious that the 75 residue of wild TrpR and mTrpR affects the protein dynamics flexibilities by the long-range effects.The ATD and MD both confirm that the differences in the size of side-chain and three-dimensional structures of two different 75 residues in the wild TrpR and mTrpR will spread to the entire protein by way of the long-range effects.Long-range effect affects the protein side chain interaction,conformational changes,flexibilities and secondary structures.Further,the ATD result also shows that each 75 residue of the symmetric homodimer has the same effect,and the two 75 residues have a positive correlation in long-range regulating processes.The residues 48,50,71,79 in chainⅠof wild TrpR and residues 45,72,80 in chainⅡof mTrpR play important roles in long-range interaction processes.展开更多
Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus result...Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus resulting in a degradation of detection performance.In order to tackle these challenges,a floating waste detection algorithm based on YOLOv7 is proposed,which combines the improved GFPN(Generalized Feature Pyramid Network)and a long-range attention mechanism.Firstly,we import the improved GFPN to replace the Neck of YOLOv7,thus providing more effective information transmission that can scale into deeper networks.Secondly,the convolution-based and hardware-friendly long-range attention mechanism is introduced,allowing the algorithm to rapidly generate an attention map with a global receptive field.Finally,the algorithm adopts the WiseIoU optimization loss function to achieve adaptive gradient gain allocation and alleviate the negative impact of low-quality samples on the gradient.The simulation results reveal that the proposed algorithm has achieved a favorable average accuracy of 86.3%in real-time scene detection tasks.This marks a significant enhancement of approximately 6.3%compared with the baseline,indicating the algorithm's good performance in floating waste detection.展开更多
The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this stu...The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this study,molecular dynamics(MD)simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity,modulated by surface charges,to elucidate the adsorption behavior of nanobubbles at the interface.Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry.We observed that as the surface charge increases,the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape,and ultimately forming a stable nanobubble upon an ordered water monolayer.When the solid–water interactions are weak with a small partial charge,the hydrophobic gas(N_(2))molecules accumulate near the solid surfaces.However,we have found,for the first time,that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges.Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.展开更多
In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order hom...In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.展开更多
In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belon...In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.展开更多
In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval...In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.展开更多
Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometri...Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometrical effects as well as stronger intermetallic interactions due to the ordered arrangement of metal atoms,thus exhibiting superior electrocata-lytic activity and durability.However,quantitatively analyzing the ordering degree of IMC and exploring the correlation between the ordering degree and ORR activity remains extremely challenging.Herein,a series of ternary Pt_(2)NiCo interme-tallic catalysts(o-Pt_(2)NiCo)with different ordering degree were synthesized by annealing temperature modulation.Among them,the o-Pt_(2)NiCo which annealed at 800℃for two hours exhibits the highest ordering degree and the optimal ORR ac-tivity,which the mass activity of o-Pt_(2)NiCo is 1.8 times and 2.8 times higher than that of disordered Pt_(2)NiCo alloy and Pt/C.Furthermore,the o-Pt_(2)NiCo still maintains 70.8%mass activity after 30,000 potential cycles.Additionally,the ORR activity test results for Pt_(2)NiCo IMC with different ordering degree also provide a positive correlation between the ordering degree and ORR activity.This work provides a prospective design direction for ternary Pt-based electrocatalysts.展开更多
Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applica...Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.展开更多
In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introduc...In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.展开更多
Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectiv...Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.展开更多
On May 14th,following the U.S.adjustment of additional tariffs on Chinese goods,American buyers began stockpiling in earnest.Many cross-border e-commerce companies also received a surge of orders.At 7 PM,a bustling Ha...On May 14th,following the U.S.adjustment of additional tariffs on Chinese goods,American buyers began stockpiling in earnest.Many cross-border e-commerce companies also received a surge of orders.At 7 PM,a bustling Hangzhou-based cross-border e-commerce company was alive with multiple languages echoing through its live-streaming rooms as backend order numbers climbed steadily.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21274148 and 21074135)The experimental setup at the Nanofocus Endstation of MiNaXS was funded by the German Federal Ministry of Education and Research(projects BMBF 05KS7FK1 and 05K10FK3)
文摘Long-range ordered nanostructures are prepared in the poly(styrene)-block-poly(e-caprolactone) diblock copolymer thin films using micromolding. We evaluated the change in crystallinity based on grazing-incidence X-ray diffraction and proved that the crystallinity increased with the decrease of the mold size. This means that ordered nanostructures with atomic length scale order can be adjusted by tuning the mesoscale confinement. The inherent mechanism was the cooperation of geometric confinement, microphase structure and surface-induced ordering of PS-b-PCL in the melt, which paved the way for the subsequent crystal growth. These findings establish a route to promote the cost-effective nanofabrication by combining the mature microfabrication technique with the emerging directed self-assembly of block copolymers.
基金Supported by the Pandeng Projectthe National Natural Science Foundation of China under Grant No.19677202the Chinese Academy of Sciences。
文摘By applying Bogoliubov's ineguality to double-exchange(DE) ladders, we show that the ferromagnetic(FM) order is absent in the new DE systems at finite temperatures. The incorporation of Jahn-Teller electron-phonon coupling, orbital degeneracy and on-site Coulomb interaction with the DE interaction do not preserve these orders. The long-wavelength thermal fluctuations of the spins oversome the DEFM correlation and destroy the FM orders. The implication of the absence of FM order on the transport of the DE ladders is discussed.
基金supported by the National Natural Science Foundation of China(22105218)Science and Technology Project of Jiangxi Provincial Education Department(GJJ2201525).
文摘The study of temperature-driven phase transitions is significant in phosphate chemistry,as these transitions often lead to unique physical properties for specific applications,such as catalysis,energy storage,ion conduction,and nonlinear optics[1–3].The phase transition from room temperature(RT)to high temperature(HT)in phosphates is always from periodic structures to disordered or amorphous states[4–8].At RT,phosphates often maintain a highly ordered crystalline structure,which is stabilized by the lower thermal energy.As the temperature increases,the thermal energy disrupts the periodic arrangement of atoms and leads to a phase transition,where the once ordered structure becomes increasingly disordered or even amorphous.
文摘Long-range magnetic order appears on a side decorated Heisenberg spin nanoribbon at nonzero temperature,although no spontaneous magnetization exists in a one-or two-dimensional isotropic Heisenberg model at any nonzero temperature according to the Mermin-Wagner theorem.By use of the spin Green's function method,we calculated the magnetizations of Heisenberg nanoribbons decorated by side spins with single-ion anisotropy and found that the system exhibits a nonzero transition temperature,whether the decorated edge spins of the system link together or separate from each other.When the width of the nanoribbon achieves infinite limit,the transition temperatures of the system tend to the same finite constant eventually whether one edge or both edges are decorated by side spins in the nanoribbon.The results reveal that the magnetism of a low-dimensional spin system is different from that of a threedimensional spin system.When the single-ion anisotropy of edge spins in a Heisenberg spin nanoribbon can be modulated by an electric field experimentally,various useful long-range magnetic orders of the system can be obtained.This work can provide a detailed theoretical basis for designing and fabricating next-generation low-dimensional magnetic random-access memory.
基金supported by the National Natural Science Foundation of China(Nos.21573059,12274118 and 22208088)Henan Center for Outstanding Overseas Scientists(No.GZS2023007)Special Project for Fundamental Research in University of Henan Province(No.22ZX013)。
文摘Sluggish sulfur conversion kinetics pose an ongoing challenge in lithium-sulfur batteries(LSBs).Here,we present a solution through far-reaching long-range electronic regulation(LRER)on single-atom active sites.N-doped carbons(Co-NC)are implanted with densely-distributed Co single atoms,and supported on Ti_(3)C_(2)T_(x)MXene substrates to assemble 3D Co-NC/MXene catalyst.MXene effectively mediates interlayer charge transfer(~0.70|e|)contrasted with popular carbon materials(~0.06|e|)to produce LRER through surrounding carbon atoms.The synergy of LRER with near-range electronic regulation(NRER)tunes electronic structures,and enhances heterostructural stability,thus provoking desirous catalytic kinetics of Co single atoms in sulfur reduction.Thereby,the Co-NC/MXene/S cathodes exhibit impressive rate performance and excellent cycling stability(only 0.015%capacity decay per cycle over 600 cycles at 4 C)in LSBs,surpassing state-of-the-art sulfur cathodes.This work reveals the importance of LRER for improved catalysis,and provides new guidance to tailor heterostructures to achieve high-efficient catalysts in various process.
基金supports by the National Natural Science Foundation of China(NSFC,Grant No.52271113)the Natural Science Foundation of Shaanxi Province,China(2020JM 218)the Fundamental Research Funds for the Central Universities(CHD300102311405)。
文摘Catalysts with asymmetric coordination exhibit excellent electrocatalytic activity due to changes in the active sites,which affect the arrangement of reactants and catalytic activity/selectivity.Hence,the exploration of the inherent characteristics of active sites within diverse coordination environments holds great significance for the experimental design of catalytic structures.Single-atom catalysts(SACs)characterized by high coordination with four carbons(26 candidates)and low coordination with dinitrogen(27candidates)are constructed using nitrogen-doped graphdiyne derivatives(NGDY)as the substrate.Additionally,5 species of dual-atom catalysts(DACs)with coexistence of both high and low coordination sites are also developed and their nitrogen reduction reaction(NRR)activities are systematically investigated by density functional theory.The results indicate that metals with low coordination exhibit superior catalytic performance,such as Mo^(L)-NGDY(U_(L)=-0.30 V)and Nb^(L)-NGDY(U_(L)=-0.32 V).Furthermore,machine learning(ML)methods have deeply analyzed and elucidated the primary intrinsic characteristics that influence catalytic performance.These results not only unveil the underlying mechanisms behind the exceptional catalytic performance exhibited by low-coordination metal atoms,but also provide relevant and significant descriptors.More importantly,based on an investigation of the catalytic activity of a series of DACs,the“buffer and low-coordination accumulate”asymmetric coordination mechanism is proposed to unveil the long-range interactions between low and high coordination atoms.Due to this remote communication,MoNb-NGDY(U_(L)=-0.09/-0.37 V)exhibits the best NRR activity.This mechanism provides valuable insights into the origin of long-range bipartite interactions and inspires the design and synthesis of NRR catalysts with different coordination environments.
基金supported by the Director General,Indian Council of Agricultural Research(ICAR),New Delhithe Director,ICAR-National Rice Research Institute,Cuttack.
文摘Consecutive stresses,such as initial submergence during germination followed by water deficit during the seedling stage,pose significant challenges to direct-seeded rice cultivation.By Linkage disequilibrium analysis,Sub1 and Dro1(Δbp:10 Mb),as well as Sub1 and TPP7(Δbp:6 Mb)were identified to exhibit long-range linkage disequilibrium(LRLD).Meta-QTL analysis further revealed that Sub1 and TPP7 co-segregated for tolerance to submergence at the germination and seedling stages.Based on this,we hypothesized that LRLD might influence plant responses to consecutive stresses.To test this hypothesis,we developed a structured recombinant inbred line population from a cross between Bhalum 2 and Nagina 22,with alleles(Sub1 and TPP7)in linkage equilibrium.Mendelian randomization analysis validated that the parental alleles,rather than the recombinant alleles of Sub1 and TPP7,significantly influenced 13 out of 41 traits under consecutive stress conditions.Additionally,16 minor additive effect QTLs were detected between the genomic regions,spanning Sub1 and TPP7 for various traits.A single allele difference between these genomic regions enhanced crown root number,root dry weight,and specific root area by 11.45%,15.69%,and 33.15%,respectively,under flooded germination conditions.Candidate gene analysis identified WAK79 and MRLK59 as regulators of stress responses during flooded germination,recovery,and subsequent water deficit conditions.These findings highlight the critical role of parental allele combinations and genomic regions between Sub1 and TPP7 in regulating the stress responses under consecutive stresses.Favourable haplotypes derived from these alleles can be utilized to improve stress resilience in direct-seeded rice.
文摘The relationship between the structural stability and the long-range-order parameter of stoichiometry NiAl has been studied using effective atom model based on the embedded-atom-method(EAM) potential. The results obtained from the computation show that NiAl lacks a metastable disordered structure intrinsically, and has the stable ordered B2 phase,which are consistent with experimental results.
基金Project (No. 29892168) supported by the National Natural Science Foundation of China.
文摘It is shown that in the quantum structural approach to high-Tc superconductivity, the wave function in terms of the alternate molecular bonding geminals possesses off-diagonal long-range order (ODLRO).
基金supported by the Innovation project of Henan Agricultural University(No.30600982)PhD Start-up Foundation of Henan Agricultural University(30600780)2023 Instrument Operator Capability lmprovement Project(SYS2023T04)
文摘Molecular dynamics(MD)simulations and anisotropic thermal diffusion dynamics(ATD)simulations were performed on the wild TrpR and its 75 residue mutant(mTrpR)to investigate TrpR longrange effects.The ATD result shows that the mTrpR has higher fluctuation than the wild TrpR,and its helix chainⅡF has particular disorder.It is obvious that the 75 residue of wild TrpR and mTrpR affects the protein dynamics flexibilities by the long-range effects.The ATD and MD both confirm that the differences in the size of side-chain and three-dimensional structures of two different 75 residues in the wild TrpR and mTrpR will spread to the entire protein by way of the long-range effects.Long-range effect affects the protein side chain interaction,conformational changes,flexibilities and secondary structures.Further,the ATD result also shows that each 75 residue of the symmetric homodimer has the same effect,and the two 75 residues have a positive correlation in long-range regulating processes.The residues 48,50,71,79 in chainⅠof wild TrpR and residues 45,72,80 in chainⅡof mTrpR play important roles in long-range interaction processes.
基金Supported by the Science Foundation of the Shaanxi Provincial Department of Science and Technology,General Program-Youth Program(2022JQ-695)the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government(22JK0378)+1 种基金the Talent Program of Weinan Normal University(2021RC20)the Educational Reform Research Project(JG202342)。
文摘Floating wastes in rivers have specific characteristics such as small scale,low pixel density and complex backgrounds.These characteristics make it prone to false and missed detection during image analysis,thus resulting in a degradation of detection performance.In order to tackle these challenges,a floating waste detection algorithm based on YOLOv7 is proposed,which combines the improved GFPN(Generalized Feature Pyramid Network)and a long-range attention mechanism.Firstly,we import the improved GFPN to replace the Neck of YOLOv7,thus providing more effective information transmission that can scale into deeper networks.Secondly,the convolution-based and hardware-friendly long-range attention mechanism is introduced,allowing the algorithm to rapidly generate an attention map with a global receptive field.Finally,the algorithm adopts the WiseIoU optimization loss function to achieve adaptive gradient gain allocation and alleviate the negative impact of low-quality samples on the gradient.The simulation results reveal that the proposed algorithm has achieved a favorable average accuracy of 86.3%in real-time scene detection tasks.This marks a significant enhancement of approximately 6.3%compared with the baseline,indicating the algorithm's good performance in floating waste detection.
基金supported by the National Natural Science Foundation of China(Grant Nos.12022508,12074394,and 22125604)Shanghai Supercomputer Center of ChinaShanghai Snowlake Technology Co.Ltd.
文摘The stable nanobubbles adhered to mineral surfaces may facilitate their efficient separation via flotation in the mining industry.However,the state of nanobubbles on mineral solid surfaces is still elusive.In this study,molecular dynamics(MD)simulations are employed to examine mineral-like model surfaces with varying degrees of hydrophobicity,modulated by surface charges,to elucidate the adsorption behavior of nanobubbles at the interface.Our findings not only contribute to the fundamental understanding of nanobubbles but also have potential applications in the mining industry.We observed that as the surface charge increases,the contact angle of the nanobubbles increases accordingly with shape transformation from a pancake-like gas film to a cap-like shape,and ultimately forming a stable nanobubble upon an ordered water monolayer.When the solid–water interactions are weak with a small partial charge,the hydrophobic gas(N_(2))molecules accumulate near the solid surfaces.However,we have found,for the first time,that gas molecules assemble a nanobubble on the water monolayer adjacent to the solid surfaces with large partial charges.Such phenomena are attributed to the formation of a hydrophobic water monolayer with a hydrogen bond network structure near the surface.
基金support by the National Key R&D Program of China(Grant No.2023YFA1008901)the National Natural Science Foundation of China(Grant Nos.11988102,12172009)is gratefully acknowledged.
文摘In this manuscript,we propose an analytical equivalent linear viscoelastic constitutive model for fiber-reinforced composites,bypassing general computational homogenization.The method is based on the reduced-order homogenization(ROH)approach.The ROH method typically involves solving multiple finite element problems under periodic conditions to evaluate elastic strain and eigenstrain influence functions in an‘off-line’stage,which offers substantial cost savings compared to direct computational homogenization methods.Due to the unique structure of the fibrous unit cell,“off-line”stage calculation can be eliminated by influence functions obtained analytically.Introducing the standard solid model to the ROH method enables the creation of a comprehensive analytical homogeneous viscoelastic constitutive model.This method treats fibrous composite materials as homogeneous,anisotropic viscoelastic materials,significantly reducing computational time due to its analytical nature.This approach also enables precise determination of a homogenized anisotropic relaxation modulus and accurate capture of various viscoelastic responses under different loading conditions.Three sets of numerical examples,including unit cell tests,three-point beam bending tests,and torsion tests,are given to demonstrate the predictive performance of the homogenized viscoelastic model.Furthermore,the model is validated against experimental measurements,confirming its accuracy and reliability.
文摘In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.
基金Supported by NSFC (No.12361027)NSF of Inner Mongolia (No.2018MS01021)+1 种基金NSF of Shandong Province (No.ZR2020QA009)Science and Technology Innovation Program for Higher Education Institutions of Shanxi Province (No.2024L533)。
文摘In this paper,we give a complete characterization of all self-adjoint domains of odd order differential operators on two intervals.These two intervals with all four endpoints are singular(one endpoint of each interval is singular or all four endpoints are regulars are the special cases).And these extensions yield"new"self-adjoint operators,which involve interactions between the two intervals.
基金supported by the National Natural Science Foundation(22279036)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(B21003).
文摘Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometrical effects as well as stronger intermetallic interactions due to the ordered arrangement of metal atoms,thus exhibiting superior electrocata-lytic activity and durability.However,quantitatively analyzing the ordering degree of IMC and exploring the correlation between the ordering degree and ORR activity remains extremely challenging.Herein,a series of ternary Pt_(2)NiCo interme-tallic catalysts(o-Pt_(2)NiCo)with different ordering degree were synthesized by annealing temperature modulation.Among them,the o-Pt_(2)NiCo which annealed at 800℃for two hours exhibits the highest ordering degree and the optimal ORR ac-tivity,which the mass activity of o-Pt_(2)NiCo is 1.8 times and 2.8 times higher than that of disordered Pt_(2)NiCo alloy and Pt/C.Furthermore,the o-Pt_(2)NiCo still maintains 70.8%mass activity after 30,000 potential cycles.Additionally,the ORR activity test results for Pt_(2)NiCo IMC with different ordering degree also provide a positive correlation between the ordering degree and ORR activity.This work provides a prospective design direction for ternary Pt-based electrocatalysts.
基金supported by the National Natu-ral Science Foundation of China(Grants No.12174220 and No.12074217)the Shandong Provincial Science Foundation for Excellent Young Scholars(Grant No.ZR2023YQ001)+1 种基金the Taishan Young Scholar Program of Shandong Provincethe Qilu Young Scholar Pro-gram of Shandong University.
文摘Higher-order band topology not only enriches our understanding of topological phases but also unveils pioneering lower-dimensional boundary states,which harbors substantial potential for next-generation device applications.The distinct electronic configurations and tunable attributes of two-dimensional materials position them as a quintessential platform for the realization of second-order topological insulators(SOTIs).This article provides an overview of the research progress in SOTIs within the field of two-dimensional electronic materials,focusing on the characterization of higher-order topological properties and the numerous candidate materials proposed in theoretical studies.These endeavors not only enhance our understanding of higher-order topological states but also highlight potential material systems that could be experimentally realized.
基金Supported by the National Natural Science Foundation of China(12061048)NSF of Jiangxi Province(20232BAB201026,20232BAB201018)。
文摘In this paper,a new technique is introduced to construct higher-order iterative methods for solving nonlinear systems.The order of convergence of some iterative methods can be improved by three at the cost of introducing only one additional evaluation of the function in each step.Furthermore,some new efficient methods with a higher-order of convergence are obtained by using only a single matrix inversion in each iteration.Analyses of convergence properties and computational efficiency of these new methods are made and testified by several numerical problems.By comparison,the new schemes are more efficient than the corresponding existing ones,particularly for large problem sizes.
基金supported in part by the National Natural Science Foundation of China(62173255,62188101)Shenzhen Key Laboratory of Control Theory and Intelligent Systems(ZDSYS20220330161800001)
文摘Dear Editor,In this letter,a constrained networked predictive control strategy is proposed for the optimal control problem of complex nonlinear highorder fully actuated(HOFA)systems with noises.The method can effectively deal with nonlinearities,constraints,and noises in the system,optimize the performance metric,and present an upper bound on the stable output of the system.
文摘On May 14th,following the U.S.adjustment of additional tariffs on Chinese goods,American buyers began stockpiling in earnest.Many cross-border e-commerce companies also received a surge of orders.At 7 PM,a bustling Hangzhou-based cross-border e-commerce company was alive with multiple languages echoing through its live-streaming rooms as backend order numbers climbed steadily.