There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci...There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.展开更多
Alzheimer’s disease(AD)is a neurological disorder that predominantly affects the brain.In the coming years,it is expected to spread rapidly,with limited progress in diagnostic techniques.Various machine learning(ML)a...Alzheimer’s disease(AD)is a neurological disorder that predominantly affects the brain.In the coming years,it is expected to spread rapidly,with limited progress in diagnostic techniques.Various machine learning(ML)and artificial intelligence(AI)algorithms have been employed to detect AD using single-modality data.However,recent developments in ML have enabled the application of these methods to multiple data sources and input modalities for AD prediction.In this study,we developed a framework that utilizes multimodal data(tabular data,magnetic resonance imaging(MRI)images,and genetic information)to classify AD.As part of the pre-processing phase,we generated a knowledge graph from the tabular data and MRI images.We employed graph neural networks for knowledge graph creation,and region-based convolutional neural network approach for image-to-knowledge graph generation.Additionally,we integrated various explainable AI(XAI)techniques to interpret and elucidate the prediction outcomes derived from multimodal data.Layer-wise relevance propagation was used to explain the layer-wise outcomes in the MRI images.We also incorporated submodular pick local interpretable model-agnostic explanations to interpret the decision-making process based on the tabular data provided.Genetic expression values play a crucial role in AD analysis.We used a graphical gene tree to identify genes associated with the disease.Moreover,a dashboard was designed to display XAI outcomes,enabling experts and medical professionals to easily comprehend the predic-tion results.展开更多
Convolutional neural networks (CNNs) have been applied in state-of-the-art visual tracking tasks to represent the target. However, most existing algorithms treat visual tracking as an object-specific task. Therefore...Convolutional neural networks (CNNs) have been applied in state-of-the-art visual tracking tasks to represent the target. However, most existing algorithms treat visual tracking as an object-specific task. Therefore, the model needs to be retrained for different test video sequences. We propose a branch-activated multi-domain convolutional neural network (BAMDCNN). In contrast to most existing trackers based on CNNs which require frequent online training, BAMDCNN only needs offine training and online fine-tuning. Specifically, BAMDCNN exploits category-specific features that are more robust against variations. To allow for learning category-specific information, we introduce a group algorithm and a branch activation method. Experimental results on challenging benchmark show that the proposed algorithm outperforms other state-of-the-art methods. What's more, compared with CNN based trackers, BAMDCNN increases tracking speed.展开更多
Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of ope...Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of operational state variables for AHU systems is limited in practical,and the effectiveness and applicability of existing DL methods for diagnosis require further validation.Secondly,the interpretability performance of DL models under various information scenarios needs further exploration.To address these challenges,this study utilized publicly available ASHRAE RP-1312 AHU fault data and employed CNNs to construct three FD models under three various information scenarios.Furthermore,the layer-wise relevance propagation(LRP)method was used to interpret and explain the effects of these three various information scenarios on the CNN models.An R-threshold was proposed to systematically differentiate diagnostic criteria,which further elucidates the intrinsic reasons behind correct and incorrect decisions made by the models.The results showed that the CNN-based diagnostic models demonstrated good applicability under the three various information scenarios,with an average diagnostic accuracy of 98.55%.The LRP method provided good interpretation and explanation for understanding the decision mechanism of CNN models for the unlimited information scenarios.For the very limited information scenario,since the variables are restricted,although LRP can reveal key variables in the model’s decision-making process,these key variables have certain limitations in terms of data and physical explanations for further improving the model’s interpretation.Finally,an in-depth analysis of model parameters—such as the number of convolutional layers,learning rate,βparameters,and training set size—was conducted to examine their impact on the interpretative results.This study contributes to clarifying the effects of various information scenarios on the diagnostic performance and interpretability of LRP-based CNN models for AHU FD,which helps provide improved reliability of DL models in practical applications.展开更多
Background Despite the recent progress in 3D point cloud processing using deep convolutional neural networks,the inability to extract local features remains a challenging problem.In addition,existing methods consider ...Background Despite the recent progress in 3D point cloud processing using deep convolutional neural networks,the inability to extract local features remains a challenging problem.In addition,existing methods consider only the spatial domain in the feature extraction process.Methods In this paper,we propose a spectral and spatial aggregation convolutional network(S^(2)ANet),which combines spectral and spatial features for point cloud processing.First,we calculate the local frequency of the point cloud in the spectral domain.Then,we use the local frequency to group points and provide a spectral aggregation convolution module to extract the features of the points grouped by the local frequency.We simultaneously extract the local features in the spatial domain to supplement the final features.Results S^(2)ANet was applied in several point cloud analysis tasks;it achieved stateof-the-art classification accuracies of 93.8%,88.0%,and 83.1%on the ModelNet40,ShapeNetCore,and ScanObjectNN datasets,respectively.For indoor scene segmentation,training and testing were performed on the S3DIS dataset,and the mean intersection over union was 62.4%.Conclusions The proposed S^(2)ANet can effectively capture the local geometric information of point clouds,thereby improving accuracy on various tasks.展开更多
为了解决传统人脸识别数据集构建中手工标注繁琐、低分辨率图像影响标注准确率等问题的问题,提出一种基于监控视频数据的特定人群人脸数据集自动化构建方法(constructing a facial dataset for a targeted group,CFD-TG)。该方法利用相...为了解决传统人脸识别数据集构建中手工标注繁琐、低分辨率图像影响标注准确率等问题的问题,提出一种基于监控视频数据的特定人群人脸数据集自动化构建方法(constructing a facial dataset for a targeted group,CFD-TG)。该方法利用相邻帧的人脸偏移量和相似度进行分组,并融合标准库进行分组标注和数据增强。实验结果表明,该方法所构数据集的调整兰德系数(ARI)与标准化互信息(NMI)比使用人脸聚类方法分别高出0.189、0.08;并将其在人脸识别模型FaceNet、ArcFace与AdaFace上进行了验证,基于特定人群人脸数据集的微调模型相较与原预训练模型识别准确率分别提升了0.4431、0.5912、0.1288。展开更多
车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convol...车辆检测是智能交通系统和自动驾驶的重要组成部分。然而,实际交通场景中存在许多不确定因素,导致车辆检测模型的准确率低实时性差。为了解决这个问题,提出了一种快速准确的车辆检测算法——YOLOv8-DEL。使用DGCST(dynamic group convolution shuffle transformer)模块代替C2f模块来重构主干网络,以增强特征提取能力并使网络更轻量;添加的P2检测层能使模型更敏锐地定位和检测小目标,同时采用Efficient RepGFPN进行多尺度特征融合,以丰富特征信息并提高模型的特征表达能力;通过结合GroupNorm和共享卷积的优点,设计了一种轻量型共享卷积检测头,在保持精度的前提下,有效减少参数量并提升检测速度。与YOLOv8相比,提出的YOLOv8-DEL在BDD100K数据集和KITTI数据集上,mAP@0.5分别提高了4.8个百分点和1.2个百分点,具有实时检测速度(208.6 FPS和216.4 FPS),在检测精度和速度方面实现了更有利的折中。展开更多
基金supported by State Grid Corporation Limited Science and Technology Project Funding(Contract No.SGCQSQ00YJJS2200380).
文摘There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved.
文摘Alzheimer’s disease(AD)is a neurological disorder that predominantly affects the brain.In the coming years,it is expected to spread rapidly,with limited progress in diagnostic techniques.Various machine learning(ML)and artificial intelligence(AI)algorithms have been employed to detect AD using single-modality data.However,recent developments in ML have enabled the application of these methods to multiple data sources and input modalities for AD prediction.In this study,we developed a framework that utilizes multimodal data(tabular data,magnetic resonance imaging(MRI)images,and genetic information)to classify AD.As part of the pre-processing phase,we generated a knowledge graph from the tabular data and MRI images.We employed graph neural networks for knowledge graph creation,and region-based convolutional neural network approach for image-to-knowledge graph generation.Additionally,we integrated various explainable AI(XAI)techniques to interpret and elucidate the prediction outcomes derived from multimodal data.Layer-wise relevance propagation was used to explain the layer-wise outcomes in the MRI images.We also incorporated submodular pick local interpretable model-agnostic explanations to interpret the decision-making process based on the tabular data provided.Genetic expression values play a crucial role in AD analysis.We used a graphical gene tree to identify genes associated with the disease.Moreover,a dashboard was designed to display XAI outcomes,enabling experts and medical professionals to easily comprehend the predic-tion results.
基金the Innovation Action Plan Foundation of Shanghai(No.16511101200)
文摘Convolutional neural networks (CNNs) have been applied in state-of-the-art visual tracking tasks to represent the target. However, most existing algorithms treat visual tracking as an object-specific task. Therefore, the model needs to be retrained for different test video sequences. We propose a branch-activated multi-domain convolutional neural network (BAMDCNN). In contrast to most existing trackers based on CNNs which require frequent online training, BAMDCNN only needs offine training and online fine-tuning. Specifically, BAMDCNN exploits category-specific features that are more robust against variations. To allow for learning category-specific information, we introduce a group algorithm and a branch activation method. Experimental results on challenging benchmark show that the proposed algorithm outperforms other state-of-the-art methods. What's more, compared with CNN based trackers, BAMDCNN increases tracking speed.
基金supported by the Opening Fund of Key Laboratory of Low-grade Energy Utilization Technologies and Systems of Ministry of Education of China(Chongqing University)(No.LLEUTS-202305)the National Natural Science Foundation of China(No.51906181)+4 种基金the Youth Innovation Technology Project of Higher School in Shandong Province(No.2022KJ204)“The 14th Five Year Plan”Hubei Provincial advantaged characteristic disciplines(groups)project of Wuhan University of Science and Technology(No.2023D0504,No.2023D0501)the Opening Fund of State Key Laboratory of Green Building in Western China(No.LSKF202316)Hubei Undergraduate Training Program for Innovation and Entrepreneurship(No.S202210488076)the Wuhan University of Science and Technology Postgraduate Innovation and Entrepreneurship Fund(JCX2023026).
文摘Deep learning(DL),especially convolutional neural networks(CNNs),has been widely applied in air handling unit(AHU)fault diagnosis(FD).However,its application faces two major challenges.Firstly,the accessibility of operational state variables for AHU systems is limited in practical,and the effectiveness and applicability of existing DL methods for diagnosis require further validation.Secondly,the interpretability performance of DL models under various information scenarios needs further exploration.To address these challenges,this study utilized publicly available ASHRAE RP-1312 AHU fault data and employed CNNs to construct three FD models under three various information scenarios.Furthermore,the layer-wise relevance propagation(LRP)method was used to interpret and explain the effects of these three various information scenarios on the CNN models.An R-threshold was proposed to systematically differentiate diagnostic criteria,which further elucidates the intrinsic reasons behind correct and incorrect decisions made by the models.The results showed that the CNN-based diagnostic models demonstrated good applicability under the three various information scenarios,with an average diagnostic accuracy of 98.55%.The LRP method provided good interpretation and explanation for understanding the decision mechanism of CNN models for the unlimited information scenarios.For the very limited information scenario,since the variables are restricted,although LRP can reveal key variables in the model’s decision-making process,these key variables have certain limitations in terms of data and physical explanations for further improving the model’s interpretation.Finally,an in-depth analysis of model parameters—such as the number of convolutional layers,learning rate,βparameters,and training set size—was conducted to examine their impact on the interpretative results.This study contributes to clarifying the effects of various information scenarios on the diagnostic performance and interpretability of LRP-based CNN models for AHU FD,which helps provide improved reliability of DL models in practical applications.
文摘Background Despite the recent progress in 3D point cloud processing using deep convolutional neural networks,the inability to extract local features remains a challenging problem.In addition,existing methods consider only the spatial domain in the feature extraction process.Methods In this paper,we propose a spectral and spatial aggregation convolutional network(S^(2)ANet),which combines spectral and spatial features for point cloud processing.First,we calculate the local frequency of the point cloud in the spectral domain.Then,we use the local frequency to group points and provide a spectral aggregation convolution module to extract the features of the points grouped by the local frequency.We simultaneously extract the local features in the spatial domain to supplement the final features.Results S^(2)ANet was applied in several point cloud analysis tasks;it achieved stateof-the-art classification accuracies of 93.8%,88.0%,and 83.1%on the ModelNet40,ShapeNetCore,and ScanObjectNN datasets,respectively.For indoor scene segmentation,training and testing were performed on the S3DIS dataset,and the mean intersection over union was 62.4%.Conclusions The proposed S^(2)ANet can effectively capture the local geometric information of point clouds,thereby improving accuracy on various tasks.
文摘为了解决传统人脸识别数据集构建中手工标注繁琐、低分辨率图像影响标注准确率等问题的问题,提出一种基于监控视频数据的特定人群人脸数据集自动化构建方法(constructing a facial dataset for a targeted group,CFD-TG)。该方法利用相邻帧的人脸偏移量和相似度进行分组,并融合标准库进行分组标注和数据增强。实验结果表明,该方法所构数据集的调整兰德系数(ARI)与标准化互信息(NMI)比使用人脸聚类方法分别高出0.189、0.08;并将其在人脸识别模型FaceNet、ArcFace与AdaFace上进行了验证,基于特定人群人脸数据集的微调模型相较与原预训练模型识别准确率分别提升了0.4431、0.5912、0.1288。