期刊文献+

基于双分支卷积神经网络的气水动态分析

Gas-water dynamic analysis based on two-branch convolutional neural network
在线阅读 下载PDF
导出
摘要 传统气水分析方法主要有数值分析方法、实验模拟法等,但数值分析方法需要大量难以测量的数据,实验模拟法难以表征复杂油气开发现场,为此,文章基于深度学习神经网络提出一种新的气水分析方法。该方法根据气水动态物理模型建立的双分支卷积神经网络分别对排水井和产气井进行建模,个性化表征生产井和排水井的动静态数据;将产气井的气水产量数据作为输出,实现井组动态耦合关联,建立井组气水动态分析的深度学习网络模型。主动排水井组动态生产数据分析表明,该双分支卷积神经网络可实现3口生产井的日产气量和日产水量的高质量预测,揭示了主动排水井组中的复杂关联,可进行气水关系动态分析,从而为油气藏工程师提供了一种方便快捷的分析方法。 Traditional gas-water analysis methods mainly include numerical analysis methods and experimental simulation methods,but numerical analysis methods require a large amount of difficult-to-measure data,and experimental simulation methods are difficult to characterize complex oil and gas development sites.For this reason,this paper proposes a new gas-water analysis method based on deep learning neural networks.Based on the dynamic physical model of gas and water,a two-branch convolutional neural network is established to model drainage well and production well separately,and personalize the dynamic and static data of production and drainage wells;the gas and water production data from the production wells are then used as the output to achieve dynamic coupling and correlation of the well group,thereby building a deep learning network model for the dynamic analysis of gas and water in the well group.The analysis of the dynamic production data of the active drainage well group shows that the two-branch convolutional neural network can achieve high-quality prediction of daily gas and water production of the three production wells.This suggests that the two-branch convolutional neural network can reveal complex correlations of wells in active drainage well group and perform dynamic analysis of gas-water relationships,thus providing a convenient and fast analysis method for oil and gas reservoir engineers.
作者 李道伦 吕茂春 查文舒 沈路航 LI Daolun;LYU Maochun;ZHA Wenshu;SHEN Luhang(School of Mathematics,Hefei University of Technology,Hefei 230601,China)
出处 《合肥工业大学学报(自然科学版)》 北大核心 2025年第6期828-832,838,共6页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(12172115)。
关键词 气水动态分析 主动排水井组 双分支卷积神经网络 日产气 日产水 gas-water dynamic analysis active drainage well group two-branch convolutional neural network daily gas production daily water production
  • 相关文献

参考文献4

二级参考文献40

  • 1张祥,纪宗兰,杨银山,曾惠兰,王永强,李宝山.试论柴达木盆地第四系盖层的封盖机理[J].天然气地球科学,2004,15(4):383-386. 被引量:6
  • 2李颖川,覃斌,刘永辉.球塞气举可视化物理模拟实验研究[J].天然气工业,2004,24(11):103-105. 被引量:16
  • 3郭平,黄伟岗,姜贻伟,毕建霞,陈召佑.致密气藏束缚与可动水研究[J].天然气工业,2006,26(10):99-101. 被引量:57
  • 4谭海芳,黄书坤.确定束缚水饱和度的方法研究[J].国外测井技术,2006,21(4):23-24. 被引量:10
  • 5李道伦,卢德唐,孔祥言,杜奕.BP神经网络隐式法在测井数据处理中的应用[J].石油学报,2007,28(3):105-108. 被引量:14
  • 6Rezaee M,Rostami B,Zadeh M,Mojarrad M.Experimen-tal determination of optimised production rate and its up-scaling analysis in strong water drive gas reservoirs [C]//paper 16938 presented at the International Petroleum Tech-nology Conference,26-28 March,2013,Beijing, China.DOI:http: // dx.doi.org/10.2523/16938-ABSTRACT.
  • 7Roopa IV,Khan Z,Baksh K. Understanding Trinidad gasreservoir performance: Mango,Mahogany, and Immor-telle field water drive revservoir anomalies [Cj // paper158380-MS presented at the SPETT 2012 Energy Confer-ence and Exhibition, 11-13 June 2012,Port-of-Spain,Trinidad.DOI:http: //dx.doi.org/10.2118/158380-MS.
  • 8Rezaee M, Rostami B, Pourafshary P.Heterogeneity effecton non-wetting phase trapping in strong water drive gasreservoirs[J],Journal of Natural Gas Science and Engineer-ing, 2013 ,14( 9) : 185-191.
  • 9John J.Carroll.The water content of acid gas and sour gas from100° to 220° F and pressures to 10 000 psi[C] // paper presen-ted at the 81st Annual GPA Convention,11-13 March 2012.Dallas,Texas ?USA.Dallas;Gas Processors Associations?2012.
  • 10国家质量监督检疫总局,国家标准化管理委员会.GB/T26979—2011天然气藏分类[S].北京:石油工业出版社,2011.

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部