The spatial distribution of wind speed varies greatly over steep complex terrain, thus the selection of an optimal site in such terrain for wind turbine construction requires great care. We have developed a numerical ...The spatial distribution of wind speed varies greatly over steep complex terrain, thus the selection of an optimal site in such terrain for wind turbine construction requires great care. We have developed a numerical model for simulating unsteady flows called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, COM putational Prediction of Airflow over Complex Terrain), which is based on the LES (Large-Eddy Simulation) technique. The computational domain of RIAM-COMPACT can be varied from several meters to several kilometers, and the model is able to predict airflow over complex terrain with high accuracy. The present paper discusses the application of RIAM-COMPACT to the micro-siting of wind turbines at sites outside Japan. The results from two case studies will be presented.展开更多
复杂地形风电机组建设时易形成高边坡地形,可能严重影响机组的发电量和疲劳寿命。以重庆市某复杂山地风电场为例,基于CDRFG(Consistent Discretizing Random Flow Generation)方法生成大气边界层湍流入口,采用大涡模拟技术重现高边坡复...复杂地形风电机组建设时易形成高边坡地形,可能严重影响机组的发电量和疲劳寿命。以重庆市某复杂山地风电场为例,基于CDRFG(Consistent Discretizing Random Flow Generation)方法生成大气边界层湍流入口,采用大涡模拟技术重现高边坡复杂地形的湍流风场分布,并根据激光测风雷达和测风塔实测数据验证大涡模拟结果的准确性;对比分析了风机平台开挖导致的3种不同高边坡地形下,风机机位湍流风场的差异性,提出了风机平台开挖影响评估指标,深入分析了高边坡地形对风电机组发电效益和安全运行的影响。研究为复杂地形风机平台建设提供了科学保障。展开更多
复杂地形风力机安装时吊装平台的开挖易形成边坡地形,改变了原始地形地貌,导致湍流风场特性发生变化,严重影响风力机的发电效率和安全运行。为分析吊装平台开挖后形成边坡地形的湍流风场特性,以二维山脊地形为研究对象,基于窄带湍流合成...复杂地形风力机安装时吊装平台的开挖易形成边坡地形,改变了原始地形地貌,导致湍流风场特性发生变化,严重影响风力机的发电效率和安全运行。为分析吊装平台开挖后形成边坡地形的湍流风场特性,以二维山脊地形为研究对象,基于窄带湍流合成法(narrow band synthesis random flow generation,NSRFG)方法建立了大气湍流风场并作为数值计算的入流条件,对吊装平台5种开挖位置和5种开挖深度形成的边坡地形的风场进行大涡模拟研究。结果表明:在5种开挖位置形成的边坡地形条件下,随着距离平台高度的增大,各吊装平台处的风速呈现先增大后减小再增大的趋势,湍动能呈现先增大后减小的趋势;当开挖的吊装平台位于迎风侧时,风速和湍动能在离平台较低的位置达到稳定。随着开挖深度的增大,离平台较近的区域风速波动越大,当开挖深度为0.075倍的山脊高度时,风速变化范围最小,湍动能峰值也最小。该研究可为复杂地形条件下风力机吊装平台的开挖提供参考依据。展开更多
文摘The spatial distribution of wind speed varies greatly over steep complex terrain, thus the selection of an optimal site in such terrain for wind turbine construction requires great care. We have developed a numerical model for simulating unsteady flows called RIAM-COMPACT (Research Institute for Applied Mechanics, Kyushu University, COM putational Prediction of Airflow over Complex Terrain), which is based on the LES (Large-Eddy Simulation) technique. The computational domain of RIAM-COMPACT can be varied from several meters to several kilometers, and the model is able to predict airflow over complex terrain with high accuracy. The present paper discusses the application of RIAM-COMPACT to the micro-siting of wind turbines at sites outside Japan. The results from two case studies will be presented.
文摘复杂地形风电机组建设时易形成高边坡地形,可能严重影响机组的发电量和疲劳寿命。以重庆市某复杂山地风电场为例,基于CDRFG(Consistent Discretizing Random Flow Generation)方法生成大气边界层湍流入口,采用大涡模拟技术重现高边坡复杂地形的湍流风场分布,并根据激光测风雷达和测风塔实测数据验证大涡模拟结果的准确性;对比分析了风机平台开挖导致的3种不同高边坡地形下,风机机位湍流风场的差异性,提出了风机平台开挖影响评估指标,深入分析了高边坡地形对风电机组发电效益和安全运行的影响。研究为复杂地形风机平台建设提供了科学保障。
文摘复杂地形风力机安装时吊装平台的开挖易形成边坡地形,改变了原始地形地貌,导致湍流风场特性发生变化,严重影响风力机的发电效率和安全运行。为分析吊装平台开挖后形成边坡地形的湍流风场特性,以二维山脊地形为研究对象,基于窄带湍流合成法(narrow band synthesis random flow generation,NSRFG)方法建立了大气湍流风场并作为数值计算的入流条件,对吊装平台5种开挖位置和5种开挖深度形成的边坡地形的风场进行大涡模拟研究。结果表明:在5种开挖位置形成的边坡地形条件下,随着距离平台高度的增大,各吊装平台处的风速呈现先增大后减小再增大的趋势,湍动能呈现先增大后减小的趋势;当开挖的吊装平台位于迎风侧时,风速和湍动能在离平台较低的位置达到稳定。随着开挖深度的增大,离平台较近的区域风速波动越大,当开挖深度为0.075倍的山脊高度时,风速变化范围最小,湍动能峰值也最小。该研究可为复杂地形条件下风力机吊装平台的开挖提供参考依据。