期刊文献+
共找到137篇文章
< 1 2 7 >
每页显示 20 50 100
基于PCA+KNN和kernal-PCA+KNN算法的废旧纺织物鉴别 被引量:2
1
作者 李宁宁 刘正东 +2 位作者 王海滨 韩熹 李文霞 《分析测试学报》 CAS CSCD 北大核心 2024年第7期1039-1045,共7页
该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后... 该研究采集了15类废旧纺织物的4 998张近红外谱图,以7∶3的比例分为训练集和验证集,并分别采用主成分分析(PCA)与核主成分分析(kernal-PCA)两种不同降维方法对数据进行降维,并选用余弦相似度(cosine)核作为kernal-PCA的最佳核函数,最后分别将PCA和kernal-PCA降维处理后的数据进行k-近邻算法(KNN)训练。结果表明,kernal-PCA+KNN的模型准确率(95.17%)优于PCA+KNN模型的准确率(92.34%)。研究表明,kernal-PCA+KNN算法可以实现15类废旧纺织物识别准确率的提升,为废旧纺织物在线近红外自动分拣提供有力的技术支撑。 展开更多
关键词 废旧纺织物 主成分分析(PCA) 核主成分分析(kernel-pca) k-近邻算法(KNN) 分类识别
在线阅读 下载PDF
基于特征样本核主元分析的TE过程快速故障辨识方法(英文) 被引量:20
2
作者 薄翠梅 张湜 +1 位作者 张广明 王执铨 《化工学报》 EI CAS CSCD 北大核心 2008年第7期1783-1789,共7页
核主元分析(KPCA)在非线性系统的故障检测方面明显优于普通的PCA方法,但存在无法进行故障辨识以及在故障诊断过程常常出现核矩阵K计算困难等难题。针对上述问题,提出了一种基于特征样本核主元分析方法(FS-KPCA)非线性故障辨识方法。首... 核主元分析(KPCA)在非线性系统的故障检测方面明显优于普通的PCA方法,但存在无法进行故障辨识以及在故障诊断过程常常出现核矩阵K计算困难等难题。针对上述问题,提出了一种基于特征样本核主元分析方法(FS-KPCA)非线性故障辨识方法。首先采用特征样本(FS)提取方法有效解决核矩阵K的计算量问题。然后利用计算核函数的偏导方法求取KPCA监控中每个原始变量对统计量T2和SPE的贡献率,利用每个变量对监控统计量贡献程度的不同,可以辨识出故障源。将上述方法应用到TE过程,仿真结果表明该方法不仅能够有效辨识故障,而且提高了故障检测和辨识速度。 展开更多
关键词 核主元分析 故障辨识 梯度算法 特征样本提取 TE过程
在线阅读 下载PDF
基于核PCA方法的高分辨率遥感图像自动解译 被引量:10
3
作者 张微 张伟 +2 位作者 刘世英 杨金中 茅晟懿 《国土资源遥感》 CSCD 2011年第3期82-87,共6页
针对基于像元的高分辨率遥感图像自动解译存在的缺点,提出一种分三步走的高分辨率遥感图像自动解译技术流程:首先采用核PCA进行特征提取,然后采用支持向量机(Support Vector Machine,SVM)进行分类,最后采用择多滤波器进行分类后处理。... 针对基于像元的高分辨率遥感图像自动解译存在的缺点,提出一种分三步走的高分辨率遥感图像自动解译技术流程:首先采用核PCA进行特征提取,然后采用支持向量机(Support Vector Machine,SVM)进行分类,最后采用择多滤波器进行分类后处理。通过对覆盖西藏山南地区的IKONOS图像的解译实验表明,本文方法能够有效地实现遥感图像自动解译,其结果与人工目视解译图基本一致,取得了理想的效果。 展开更多
关键词 IKONOS 核PCA 支持向量机 分类后处理
在线阅读 下载PDF
基于核主元分析和最小二乘支持向量机的软测量建模 被引量:23
4
作者 徐晔 杜文莉 钱锋 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第17期3873-3875,3918,共4页
软测量技术是工业过程控制和分析的有力工具,它的核心问题是如何建立学习速度快且泛化性能优良的软测量模型。提出了一种基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的软测量建模方法,利用核主元分析提取软测量输入数据空间中的... 软测量技术是工业过程控制和分析的有力工具,它的核心问题是如何建立学习速度快且泛化性能优良的软测量模型。提出了一种基于核主元分析(KPCA)和最小二乘支持向量机(LSSVM)的软测量建模方法,利用核主元分析提取软测量输入数据空间中的非线性主元,然后用最小二乘支持向量机进行建模,不但降低模型复杂性,而且提高了模型泛化能力。最后将上述方法用于PTA结晶过程的软测量建模,仿真结果表明:与SVM、PCA-SVM建模方法相比,该KPCA-LSSVM方法具有学习速度快、跟踪性能好、泛化能力强等优点,是一种有效的软测量建模方法。 展开更多
关键词 软测量 核主元分析 最小二乘支持向量机 建模
在线阅读 下载PDF
主成分分析法与核主成分分析法在机械噪声数据降维中的应用比较 被引量:39
5
作者 梁胜杰 张志华 崔立林 《中国机械工程》 EI CAS CSCD 北大核心 2011年第1期80-83,共4页
依据线性降维与非线性降维的分类原则,分别选择主成分分析法和核主成分分析法对某双层圆柱壳体在不同工况下的机械噪声数据进行降维;然后使用神经网络和支持向量机两种方法分别计算噪声数据在降维前后的正确识别率,以比较不同降维方法... 依据线性降维与非线性降维的分类原则,分别选择主成分分析法和核主成分分析法对某双层圆柱壳体在不同工况下的机械噪声数据进行降维;然后使用神经网络和支持向量机两种方法分别计算噪声数据在降维前后的正确识别率,以比较不同降维方法的降维效果,从而确定适合于某双层圆柱壳体机械噪声数据的降维方法。 展开更多
关键词 主成分分析法 核主成分分析法 核函数 神经网络 支持向量机 机械噪声 降维
在线阅读 下载PDF
基于补偿距离评估-小波核PCA的滚动轴承故障诊断 被引量:13
6
作者 王宏超 陈进 董广明 《振动与冲击》 EI CSCD 北大核心 2013年第18期87-90,94,共5页
提出基于补偿距离评估技术-小波核PCA的滚动轴承故障诊断方法。将补偿距离评估技术用于滚动轴承时、频域故障特征向量降维,将降维后故障特征向量作为小波核PCA的特征向量。将分类结果与未进行补偿距离评估技术降维直接进行小波核主元分... 提出基于补偿距离评估技术-小波核PCA的滚动轴承故障诊断方法。将补偿距离评估技术用于滚动轴承时、频域故障特征向量降维,将降维后故障特征向量作为小波核PCA的特征向量。将分类结果与未进行补偿距离评估技术降维直接进行小波核主元分析结果比较表明,前者分类效果紧致性及计算效率更高。为突出小波核主元分析方法优势,将其与常用RBF核函数主元分析方法比较表明,前者聚类效果紧致性更高。 展开更多
关键词 补偿距离评估技术 小波核 主元分析 滚动轴承 故障诊断
在线阅读 下载PDF
基于小波函数的核主元特征约简方法研究 被引量:5
7
作者 郭磊 陈进 +1 位作者 朱义 赵发刚 《振动工程学报》 EI CSCD 北大核心 2009年第3期287-291,共5页
提出一种基于小波核函数的核主元特征约简方法。核函数是核主元分析的关键,将Mexican hat小波函数引入核主元分析中,以增强核主元分析的非线性映射能力。用转子在正常、油膜涡动、不平衡和径向碰摩状态下的实验数据对该方法进行了检验,... 提出一种基于小波核函数的核主元特征约简方法。核函数是核主元分析的关键,将Mexican hat小波函数引入核主元分析中,以增强核主元分析的非线性映射能力。用转子在正常、油膜涡动、不平衡和径向碰摩状态下的实验数据对该方法进行了检验,比较了主元分析、核主元分析与小波核主元分析的效果。结果表明,小波核主元分析方法能有效地区分转子故障模式,更适合于故障诊断中的非线性特征约简。 展开更多
关键词 核主元分析 小波核 特征约简 故障诊断
在线阅读 下载PDF
基于增量核主成分分析的数据流在线分类框架 被引量:12
8
作者 吴枫 仲妍 吴泉源 《自动化学报》 EI CSCD 北大核心 2010年第4期534-542,共9页
核主成分分析(Kernel principal component analysis,KPCA)是一种非线性降维工具,在降低数据流分类处理量方面发挥着积极作用.然而,由于复杂性太高,导致KPCA的降维能力有限.为此,本文给出了一种增量核主成分分析算法(Incremental KPCA f... 核主成分分析(Kernel principal component analysis,KPCA)是一种非线性降维工具,在降低数据流分类处理量方面发挥着积极作用.然而,由于复杂性太高,导致KPCA的降维能力有限.为此,本文给出了一种增量核主成分分析算法(Incremental KPCA for dimensionality-reduction,IKDR),该算法在每步迭代估计中只需线性内存开销,大大降低了复杂性.在IKDR的基础上,结合BP(Back propagation)神经网络提出了数据流在线分类框架:IKOCFrame(Online classificationframe based on IKDR).通过一系列真实和人工数据集上的实验,检验了IKDR算法的收敛性,并且验证了IKOCFrame相对于同类基于成分分析的分类算法的优越性. 展开更多
关键词 降维技术 数据流分类 增量核主成分分析 独立成分分析
在线阅读 下载PDF
基于特征子空间的KPCA及其在故障检测与诊断中的应用 被引量:19
9
作者 付克昌 吴铁军 《化工学报》 EI CAS CSCD 北大核心 2006年第11期2664-2669,共6页
针对标准KPCA(kernelprincipalcomponentanalysis)不适合大样本分析的缺点,提出了一种基于特征子空间的KPCA(FSKPCA)及其故障检测与诊断方法,该方法通过构建具有较小维数的特征子空间上的正交基来简化核矩阵,从而降低KPCA的计算复杂性.... 针对标准KPCA(kernelprincipalcomponentanalysis)不适合大样本分析的缺点,提出了一种基于特征子空间的KPCA(FSKPCA)及其故障检测与诊断方法,该方法通过构建具有较小维数的特征子空间上的正交基来简化核矩阵,从而降低KPCA的计算复杂性.与标准KPCA方法相比,FSKPCA方法具有更高的计算效率且只需较小的计算机存储空间.通过非等温连续反应釜过程的故障检测与诊断的应用实例,说明了本算法的有效性. 展开更多
关键词 主成分分析 PCA 核PCA 故障检测 故障诊断
在线阅读 下载PDF
Kernel PCA与BP神经网络相结合的变压器故障诊断 被引量:4
10
作者 胡青 杜林 +1 位作者 杨丽君 孙才新 《计算机应用研究》 CSCD 北大核心 2010年第2期580-581,共2页
为了提高变压器故障诊断的准确率和抗干扰能力,提出一种基于核特征量的BP神经网络故障诊断模型。通过核主成分分析将故障样本从低维的特征空间非线性地映射到高维的核空间,提高了样本的可分性,然后以核特征量作为BP神经网络的输入特征量... 为了提高变压器故障诊断的准确率和抗干扰能力,提出一种基于核特征量的BP神经网络故障诊断模型。通过核主成分分析将故障样本从低维的特征空间非线性地映射到高维的核空间,提高了样本的可分性,然后以核特征量作为BP神经网络的输入特征量,建立变压器故障诊断模型。实验对比了结构相似、输入量不同的BP神经网络,结果表明采用核特征量的诊断模型具有更好的诊断效果和抗干扰能力。 展开更多
关键词 核主成分分析 BP神经网络 电力变压器 故障诊断
在线阅读 下载PDF
核函数方法及其在过程控制中的应用 被引量:12
11
作者 王华忠 俞金寿 《石油化工自动化》 CAS 2005年第1期25-30,共6页
基于核函数技术的各种非线性数据处理方法近来得到了较大的应用和发展。首先分析了核函数方法的基本原理和特点,然后介绍了几种主要的核函数方法及其在过程控制中的应用。针对复杂工业过程的复杂性,提出了几种集成核函数方法。最后对核... 基于核函数技术的各种非线性数据处理方法近来得到了较大的应用和发展。首先分析了核函数方法的基本原理和特点,然后介绍了几种主要的核函数方法及其在过程控制中的应用。针对复杂工业过程的复杂性,提出了几种集成核函数方法。最后对核函数方法及其在过程控制中的进一步应用进行了展望。 展开更多
关键词 核函数 支持向量机 核主元分析 核偏最小二乘法 过程控制
在线阅读 下载PDF
基于核PCA与SVM算法的木材缺陷识别 被引量:17
12
作者 马旭 刘应安 +1 位作者 业宁 闫贺 《常州大学学报(自然科学版)》 CAS 2017年第3期60-68,共9页
木材缺陷是影响木材产业化推广的重要因素之一,通过合理的木材缺陷识别方法可以有效规避木材缺陷在实际应用中带来的资源浪费问题,同时大幅提高木材的实际利用率。针对木材节子非线性的特征,提出了一种新颖的木材缺陷识别方法。首先,通... 木材缺陷是影响木材产业化推广的重要因素之一,通过合理的木材缺陷识别方法可以有效规避木材缺陷在实际应用中带来的资源浪费问题,同时大幅提高木材的实际利用率。针对木材节子非线性的特征,提出了一种新颖的木材缺陷识别方法。首先,通过核主成分分析方法(Kernel Principal Component Analysis,KPCA),采用多项式的核函数(Polynomial kernel function)对木材原始的非线性数据从低维映射到高维线性特征空间,然后再对映射空间中的线性样本进行降维处理,目的是为了提取到样本的特征参数。其次,结合SVM模型,选择多项式核函数,完成对木材缺陷的识别。最后,通过比较实验所得数据与实测数据,实验结果表明本文提出的方法有较高的识别精度和识别效率。 展开更多
关键词 木材缺陷 核函数 主成分提取 支持向量机
在线阅读 下载PDF
核回归方法在恒星光谱物理参量自动估计中的应用 被引量:3
13
作者 张健楠 吴福朝 罗阿理 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第4期1131-1136,共6页
恒星大气物理参量(有效温度、表面重力、化学丰度)是导致恒星光谱差异的主要因素。恒星大气物理参量的自动测量是LAMOST等大规模巡天望远镜所产生的海量天体光谱数据自动处理中一个重要研究内容。文章采用两种非线性核回归方法对低分辨... 恒星大气物理参量(有效温度、表面重力、化学丰度)是导致恒星光谱差异的主要因素。恒星大气物理参量的自动测量是LAMOST等大规模巡天望远镜所产生的海量天体光谱数据自动处理中一个重要研究内容。文章采用两种非线性核回归方法对低分辨率恒星光谱进行3个物理参量的自动估计:核最小二乘回归(KLSR),核PCA回归(KPCR)。实验表明:(1)KLSR与KPCR可以实现光谱到表面有效温度和表面重力的回归,但是KLSR对噪声敏感,KPCR鲁棒性好于前者;(2)对于温度参数估计,两种算法具有相近的估计效果;对于表面重力和化学丰度估计,KPCR优于KLSR和非参数回归方法;(3)KLSR与KPCR方法实现容易,模型的训练速度快,运算复杂度小,适用于恒星光谱物理参量的自动测量。 展开更多
关键词 恒星光谱 恒星大气基本物理参量 核主成分回归(KPCR) 核最小二乘回归(KLSR)
在线阅读 下载PDF
基于PCA和混合核函数QPSO_SVM频谱感知算法 被引量:13
14
作者 翟旭平 杨兵兵 孟田 《电子测量技术》 2016年第9期87-90,107,共5页
频谱感知是认知无线电系统的关键技术之一,针对基于支持向量机的频谱感知方法中核函数选取的单一性和核函数参数的不确定性,提出一种基于混合核函数支持向量机的频谱感知算法,将两种核函数混合构造新的核函数,采用量子粒子群算法对其中... 频谱感知是认知无线电系统的关键技术之一,针对基于支持向量机的频谱感知方法中核函数选取的单一性和核函数参数的不确定性,提出一种基于混合核函数支持向量机的频谱感知算法,将两种核函数混合构造新的核函数,采用量子粒子群算法对其中的参数进行优化,并引入主成分分析方法对样本进行降维并提取其全局特征。实验结果表明,该模型较传统方法在低信噪比下无线环境中的分类精度上有了明显提高,在信噪比为-10dB的无线环境中能完全识别出主用户,为频谱感知提供了一种可靠性高的设计方案。 展开更多
关键词 频谱感知 支持向量机 混合核函数 主成分分析
在线阅读 下载PDF
基于模糊核主成分分析的高光谱遥感影像特征提取研究 被引量:7
15
作者 沈照庆 陶建斌 《国土资源遥感》 CSCD 2009年第3期41-44,99,共5页
主成分分析(PCA)是一种基于数理统计的线性特征变换方法,对线性结构数据的分析非常有效,但是对非线性的高光谱遥感影像数据,容易造成信息丢失和失真。本文引入模式识别中的模糊理论和核理论,有效克服了以上缺点,得到了很好的影像特征提... 主成分分析(PCA)是一种基于数理统计的线性特征变换方法,对线性结构数据的分析非常有效,但是对非线性的高光谱遥感影像数据,容易造成信息丢失和失真。本文引入模式识别中的模糊理论和核理论,有效克服了以上缺点,得到了很好的影像特征提取效果。 展开更多
关键词 模糊集 核PCA 高光谱遥感影像 特征提取
在线阅读 下载PDF
KPCA-RVM组合建模方法及其在软测量中的应用 被引量:2
16
作者 颜学峰 陈佳 +1 位作者 胡春平 钱锋 《石油化工高等学校学报》 CAS 2009年第1期82-85,共4页
提出了一种核主元分析(KPCA)和关联向量机(RVM)相结合的组合建模方法。KPCA-RVM采用KPCA对原始自变量进行非线性变换并提取主成分,形成特征自变量;采用RVM,对KPCA变换后的样本数据进行回归建模,并根据模型的预报能力自适应的确定参与回... 提出了一种核主元分析(KPCA)和关联向量机(RVM)相结合的组合建模方法。KPCA-RVM采用KPCA对原始自变量进行非线性变换并提取主成分,形成特征自变量;采用RVM,对KPCA变换后的样本数据进行回归建模,并根据模型的预报能力自适应的确定参与回归的最佳特征变量个数,消除冗余信息干扰,获得强非线性表达能力且预报性能良好的模型。并将KPCA-RVM应用于PTA装置对羧基苯甲醛(4-CBA)含量的软测量建模,结果表明该方法预测精度高于PCA-RVM和RVM。 展开更多
关键词 核主元分析 关联向量机 软测量 对羧基苯甲醛
在线阅读 下载PDF
基于改进KNN的雷达点迹真伪鉴别方法 被引量:5
17
作者 林强 彭威 胡先进 《现代雷达》 CSCD 北大核心 2020年第4期41-45,共5页
为解决虚假目标点迹对雷达跟踪性能的影响,提出了一种基于改进K近邻(KNN)的雷达点迹真伪鉴别方法,进一步区分目标点迹和杂波点迹,滤除杂波剩余点迹,有效提高雷达处理容量和跟踪性能。该方法利用点迹形成过程中生成的特征参数,先通过核... 为解决虚假目标点迹对雷达跟踪性能的影响,提出了一种基于改进K近邻(KNN)的雷达点迹真伪鉴别方法,进一步区分目标点迹和杂波点迹,滤除杂波剩余点迹,有效提高雷达处理容量和跟踪性能。该方法利用点迹形成过程中生成的特征参数,先通过核主成分分析法对特征数据降维处理,降低数据维度,提高后续算法的运行速度;再通过加权KNN算法鉴别目标点迹和杂波点迹,点迹鉴别准确率有较高提升,达到了87.5%,算法运行速度较传统KNN算法和加权KNN算法分别提升了56%和40%。实验结果表明:该算法既有较高、较稳定的点迹鉴别准确率,又大幅度提高了算法运行速度。 展开更多
关键词 核PCA 加权KNN 点迹鉴别 目标跟踪
原文传递
最小学习机 被引量:7
18
作者 王士同 钟富礼 《江南大学学报(自然科学版)》 CAS 2010年第5期505-510,共6页
针对极端学习机(ELM)不能用于多层前向神经网络学习的问题,通过揭示单层前向神经网络(SLFN)的ELM与岭回归以及中心化的岭回归之间的关系,提出了SLFN的最小学习机。通过证明核化的中心化岭回归与核化的PCA之间的关系,提出以无限可微的核... 针对极端学习机(ELM)不能用于多层前向神经网络学习的问题,通过揭示单层前向神经网络(SLFN)的ELM与岭回归以及中心化的岭回归之间的关系,提出了SLFN的最小学习机。通过证明核化的中心化岭回归与核化的PCA之间的关系,提出以无限可微的核函数为激励函数的多层前向神经网络(MLFN)的最小学习机LLM.SLFN/MLFN的最小学习机能够保持ELM的上述优势。 展开更多
关键词 前向神经网络 核化的PCA算法 极端学习机 最小学习机
在线阅读 下载PDF
融合Kernel PCA形状先验信息的变分图像分割模型 被引量:2
19
作者 杨建功 汪西莉 李虎 《中国图象图形学报》 CSCD 北大核心 2015年第8期1035-1041,共7页
目的基于能量最小化的变分图像分割方法已经受到研究人员的广泛重视,取得了丰硕成果。但是,针对图像中存在的噪音污染、目标被遮挡等情况,则难以正确分割。引入先验形状信息是解决该问题的一个重要方向,但是随之而带来的姿态变化问题是... 目的基于能量最小化的变分图像分割方法已经受到研究人员的广泛重视,取得了丰硕成果。但是,针对图像中存在的噪音污染、目标被遮挡等情况,则难以正确分割。引入先验形状信息是解决该问题的一个重要方向,但是随之而带来的姿态变化问题是一个难点。传统的做法是在每步迭代过程中单独计算姿态变换参数,导致计算量大。方法在基于Kernel PCA(KPCA)的形状先验模型基础上,提出一种具有内在的姿态不变性的KPCA形状先验模型,并将之融合到C-V变分图像分割模型中。结果提出模型无须在每步迭代中显式地单独计算姿态变换参数,相对于C-V模型分割正确率能够提高7.47%。同时,针对KPCA模型中计算高斯核函数的参数σ取值问题,也给出一种自适应的计算方法。结论理论分析及实验表明该模型能较好地解决先验形状与目标间存在的仿射变化问题,以及噪音、目标被遮挡等问题。 展开更多
关键词 图像分割 变分方法 形状先验 核主成分分析(Kernel PCA) 姿态不变性
原文传递
基于KPCA/PNN的煤矿主通风机的故障诊断 被引量:3
20
作者 刘晶晶 尹洪胜 张晋虎 《煤矿机械》 北大核心 2011年第11期250-252,共3页
针对煤矿主通风机故障与征兆对应关系复杂的特点,以及利用传统BP网络进行故障诊断存在训练速度慢、易陷入局部极小的缺点,提出基于核主成分分析和概率神经网络的故障诊断方法。首先利用核主成分分析对非线性的、相互关联的故障变量进行... 针对煤矿主通风机故障与征兆对应关系复杂的特点,以及利用传统BP网络进行故障诊断存在训练速度慢、易陷入局部极小的缺点,提出基于核主成分分析和概率神经网络的故障诊断方法。首先利用核主成分分析对非线性的、相互关联的故障变量进行特征提取,消除变量之间的相关性,降低数据维数,得到故障特征,然后将概率神经网络作为诊断决策分类器,输出故障模式。实验表明,该方法有效地提高了煤矿主通风机的故障诊断的准确性。 展开更多
关键词 KernelPCA 核函数 概率神经网络
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部