期刊文献+
共找到97,691篇文章
< 1 2 250 >
每页显示 20 50 100
Interannual succession of phytoplankton community in a canyon-shaped drinking water reservoir during the initial impoundment period:Taxonomic versus functional groups 被引量:1
1
作者 Yi Hou Ya Cheng +6 位作者 Kai Li Meng Yang Kangzhe Huang Gang Ji Ruikang Xue Tinglin Huang Gang Wen 《Journal of Environmental Sciences》 2025年第5期454-468,共15页
During the initial impoundment period of a canyon-shaped reservoir,the water body fluctuated violently regarding water level,hydrological condition,and thermal stratification.These variations may alter the structure o... During the initial impoundment period of a canyon-shaped reservoir,the water body fluctuated violently regarding water level,hydrological condition,and thermal stratification.These variations may alter the structure of phytoplankton community,resulting in algal blooms and seriously threatening the ecological security of the reservoir.It is of great significance to understand the continuous changes of phytoplankton in the initial impoundment period for the protection of reservoir water quality.Therefore,a two-year in-situ monitoring study was conducted on water quality and phytoplankton in a representative canyonshaped reservoir named Sanhekou and the interannual changes of phytoplankton community and its response to environmental changes during the initial impoundment period were discussed at taxonomic versus functional classification levels.The results showed that the total nitrogen and permanganate index levels were relatively high in the first year due to rapid water storage and heavy rainfall input,and the more stable hydrological conditions in the second year promoted the increase of algae density and the transformation of community,and the proportion of cyanobacteria increased significantly.The succession order of phytoplankton in the first year of the initial impoundment periodwas Chlorophyta-Bacillariophyta-Chlorophyta,or J/F/X1-P/MP/W1-A/X1/MP,respectively.And the succession order in the second year was Cyanobacteria/Chlorophyta-Bacillariophyta-Chlorophyta,or L_(M)/G/P-P/A/X1-X1/J/G.Water temperature,relativewater column stability,mixing depth,and pHwere crucial factors affecting phytoplankton community succession.This study revealed the interannual succession law and driving factors of phytoplankton in the initial impoundment period and provided an important reference for the operation management and ecological protection of canyon-shaped reservoirs. 展开更多
关键词 Canyon-shaped reservoir Functional groups initial impoundment Interannual succession Water quality
原文传递
Formation and solute segregation for an asymmetric tilt boundary on{1012}twin boundaries 被引量:1
2
作者 Qiang Yang Shuhui Lv +3 位作者 Peng Chen Zefeng Xie Shuo Zhou Xin Qiu 《Journal of Magnesium and Alloys》 2025年第2期583-591,共9页
Asymmetric tilt boundaries on conventional twin boundaries(TBs)are significant for understanding the role of twins on coordinating plastic deformation in many metallic alloys.However,the formation modes of many asymme... Asymmetric tilt boundaries on conventional twin boundaries(TBs)are significant for understanding the role of twins on coordinating plastic deformation in many metallic alloys.However,the formation modes of many asymmetric tilt boundaries are hard to be accounted for based on traditional theoretical models,and the corresponding solute segregation is complex.Herein,atomic structures of a specific asymmetric boundary on{1012}TBs were reveled using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM),molecular dynamics(MD)and density functional theory(DFT)simulations.Reaction between<a60>M dislocations and the{1012}TB can generate a~61°/25°asymmetric tilt boundary.The segregation of Gd and Zn atoms is closely related to the aggregateddislocations and the interfacial interstices of the asymmetric tilt boundary,which is energetically favorable in reducing the total system energy. 展开更多
关键词 Magnesium alloy Transmission electron microscopy Twin boundary DISLOCATION SEGREGATION
在线阅读 下载PDF
An effective stress-based DSC model for predicting hydromechanical shear behavior of unsaturated collapsible soils subjected to initial shear stress 被引量:1
3
作者 Saman Soleymani Borujerdi S.Mohsen Haeri +1 位作者 Amir Akbari Garakani Chandrakant SDesai 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期539-555,共17页
Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have en... Evaluation of hydromechanical shear behavior of unsaturated soils is still a challenging issue. The time and cost needed for conducting precise experimental investigation on shear behavior of unsaturated soils have encouraged several investigators to develop analytical, empirical, or semi-empirical models for predicting the shear behavior of unsaturated soils. However, most of the previously proposed models are for specimens subjected to the isotropic state of stress, without considering the effect of initial shear stress. In this study, a hydromechanical constitutive model is proposed for unsaturated collapsible soils during shearing, with consideration of the effect of the initial shear stress. The model implements an effective stress-based disturbed state concept (DSC) to predict the stress-strain behavior of the soil. Accordingly, material/state variables were defined for both the start of the shearing stage and the critical state of the soil. A series of laboratory tests was performed using a fully automated unsaturated triaxial device to verify the proposed model. The experimental program included 23 suction-controlled unsaturated triaxial shear tests on reconstituted specimens of Gorgan clayey loess wetted to different levels of suctions under both isotropic and anisotropic stress states. The results show excellent agreement between the prediction by the proposed model and the experimental results. 展开更多
关键词 Unsaturated collapsible soil initial shear stress Hydromechanical shear behavior Effective stress Disturbed state concept Critical state
在线阅读 下载PDF
Preferential fatigue cracking at basal twist grain boundary (BTGB) in bimodal Ti-5Al-4V alloy: Dislocation activities and crack initiation
4
作者 Zhihong Wu Hongchao Kou +6 位作者 Jinshan Li Samuel Hémery Tong Li Carlo Franke Nana Chen Frédéric Prima Fan Sun 《Journal of Materials Science & Technology》 2025年第14期281-295,共15页
In recent years,(0001)twist grain boundaries(BTGBs)located in primary α grain clusters were identified as fatigue crack nucleation sites in different Ti alloys.In the present study,crack initiation was investigated i... In recent years,(0001)twist grain boundaries(BTGBs)located in primary α grain clusters were identified as fatigue crack nucleation sites in different Ti alloys.In the present study,crack initiation was investigated in a bimodal Ti-5Al-4 V alloy subjected to low-cycle fatigue and dwell-fatigue loadings at room temperature.The low fraction of primary α grains was not associated with a lack of sensitivity to BTGB cracking.Transmission electron microscopy and electron back-scattered diffraction were used to characterize BTGBs in the initial microstructure.The fatigue mechanisms were then analyzed with a focus on dislocation activity.α_(p) grains adjacent to cracked BTGBs contained a high dislocation density.It was primarily composed of planar slip bands of dislocations.In addition,<c+a>dislocations were noticed in the vicinity of cracked BTGBs.They supposedly pertain to crack tip plasticity during growth,and no evidence of a role of an incoming slip event in crack nucleation was obtained.Also,basal slip bands extending across adjacent grains were found to emerge from BTGBs.This feature provides an easier path for crack extension when growth along the grain boundary becomes difficult owing to a deviation from the basal plane.Atom probe tomography analyses evidenced V and Fe segregation at a grain boundary with a significant deviation from the BTGB configuration.This suggests a possible contribution of local solute segregation to the high cracking resistance of general α_(p)/α_(p) grain boundaries.This work provides new insights into the mechanisms involved in cracking of BTGB in Ti alloys subjected to cyclic loadings. 展开更多
关键词 Low cycle fatigue Titanium alloy Crack initiation Twist boundary Dislocations
原文传递
Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula:Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation 被引量:1
5
作者 Jiwon HWANG Dong-Hyun CHA +2 位作者 Donghyuck YOON Tae-Young GOO Sueng-Pil JUNG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1787-1803,共17页
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula... This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future. 展开更多
关键词 initial conditions dropsonde heavy rainfall forecast global model analysis evaluation
在线阅读 下载PDF
Global Strong Solutions to the Nonhomogeneous Boussinesq Equations for Magnetohydrodynamics Convection with Zero Heat Diffusion and Large Initial Data
6
作者 YANG Wanji 《数学进展》 北大核心 2025年第5期992-1014,共23页
We study the two-dimensional(2D)Cauchy problem of nonhomogeneous Boussinesq system for magnetohydrodynamics convection without heat diffusion in the whole plane.Based on delicate weighted estimates,we derive the globa... We study the two-dimensional(2D)Cauchy problem of nonhomogeneous Boussinesq system for magnetohydrodynamics convection without heat diffusion in the whole plane.Based on delicate weighted estimates,we derive the global existence and uniqueness of strong solutions.In particular,the initial data can be arbitrarily large and the initial density may contain vacuum states and even have compact support. 展开更多
关键词 nonhomogeneous Boussinesq-MHD system global well-posedness Cauchy problem zero heat diffusion large initial data
原文传递
Effect of initial microstructure on microstructure evolution and mechanical properties of 0.12C martensitic steels during quenching and tempering
7
作者 Ya-ru Wang Zi-yong Hou +6 位作者 He Yang Jun Zhao Zhi-yuan Chang Fan-mao Meng Ling Zhang Gui-lin Wu Xiao-xu Huang 《Journal of Iron and Steel Research International》 2025年第1期260-269,共10页
The microstructure evolution and mechanical properties of a Fe-0.12C-0.2Si-1.6Mn-0.3Cr-0.0025B(wt.%)steel with different initial microstructures,i.e.,hot rolled(HR)and cold rolled-annealed(CRA),were studied through op... The microstructure evolution and mechanical properties of a Fe-0.12C-0.2Si-1.6Mn-0.3Cr-0.0025B(wt.%)steel with different initial microstructures,i.e.,hot rolled(HR)and cold rolled-annealed(CRA),were studied through optical microscopy,scanning electron microscopy,electron channeling contrast imaging,microhardness and room temperature uniaxial tensile tests.After water quenching from 930℃ to room temperature,a fully martensitic microstructure was obtained in both as-quenched HR and CRA specimens,which shows a microhardness of 480±5 HV,and no significant difference in microstructure and microhardness was observed.Tensile test results show that the product of tensile strength and total elongation(UTS×TE)of the as-quenched HR specimen,i.e.,24.1 GPa%,is higher than that of the as-quenched CRA specimen,i.e.,18.9 GPa%.While,after being tempered at 300℃,the martensitic microstructures and mechanical properties of the two as-quenched specimens change significantly due to the synergy role of the matrix phase softening and the precipitation strengthening.Concerning the maximum UTS×TE,it is 18.9 GPa%obtained in the as-quenched CRA one,while that is 24.4 GPa%obtained in the HR specimen after tempered at 300℃ for 5 min. 展开更多
关键词 initial microstructure Lath martensite QUENCHING TEMPERING Mechanical property
原文传递
On the Riemann-Hilbert problem for the reverse space-time nonlocal Hirota equation with step-like initial data
8
作者 Bei-Bei Hu Ling Zhang +1 位作者 Zu-Yi Shen Ji Lin 《Communications in Theoretical Physics》 2025年第2期30-38,共9页
In this paper,we use the Riemann-Hilbert(RH)method to investigate the Cauchy problem of the reverse space-time nonlocal Hirota equation with step-like initial data:q(z,0)=o(1)as z→-∞and q(z,0)=δ+o(1)as z→∞,where... In this paper,we use the Riemann-Hilbert(RH)method to investigate the Cauchy problem of the reverse space-time nonlocal Hirota equation with step-like initial data:q(z,0)=o(1)as z→-∞and q(z,0)=δ+o(1)as z→∞,whereδis an arbitrary positive constant.We show that the solution of the Cauchy problem can be determined by the solution of the corresponding matrix RH problem established on the plane of complex spectral parameterλ.As an example,we construct an exact solution of the reverse space-time nonlocal Hirota equation in a special case via this RH problem. 展开更多
关键词 nonlocal Hirota equation Cauchy problem Riemann-Hilbert problem step-like initial data
原文传递
Global Ensemble Weather Prediction from a Deep Learning–Based Model(Pangu-Weather)with the Initial Condition Perturbations of CMA-GEPS
9
作者 Xin LIU Jing CHEN +6 位作者 Yuejian ZHU Yongzhu LIU Fajing CHEN Zhenhua HUO Fei PENG Yanan MA Yuhang GONG 《Advances in Atmospheric Sciences》 2025年第8期1636-1660,共25页
Pangu-Weather(PGW),trained with deep learning–based methods(DL-based model),shows significant potential for global medium-range weather forecasting.However,the interpretability and trustworthiness of global medium-ra... Pangu-Weather(PGW),trained with deep learning–based methods(DL-based model),shows significant potential for global medium-range weather forecasting.However,the interpretability and trustworthiness of global medium-range DLbased models raise many concerns.This study uses the singular vector(SV)initial condition(IC)perturbations of the China Meteorological Administration's Global Ensemble Prediction System(CMA-GEPS)as inputs of PGW for global ensemble prediction(PGW-GEPS)to investigate the ensemble forecast sensitivity of DL-based models to the IC errors.Meanwhile,the CMA-GEPS forecasts serve as benchmarks for comparison and verification.The spatial structures and prediction performance of PGW-GEPS are discussed and compared to CMA-GEPS based on seasonal ensemble experiments.The results show that the ensemble mean and dispersion of PGW-GEPS are similar to those of CMA-GEPS in the medium range but with smoother forecasts.Meanwhile,PGW-GEPS is sensitive to the SV IC perturbations.Specifically,PGWGEPS can generate realistic ensemble spread beyond the sub-synoptic scale(wavenumbers≤64)with SV IC perturbations.However,PGW's kinetic energy is significantly reduced at the sub-synoptic scale,leading to error growth behavior inconsistent with CMA-GEPS at that scale.Thus,this behavior indicates that the effective resolution of PGW-GEPS is beyond the sub-synoptic scale and is limited to predicting mesoscale atmospheric motions.In terms of the global mediumrange ensemble prediction performance,the probability prediction skill of PGW-GEPS is comparable to CMA-GEPS in the extratropic when they use the same IC perturbations.That means that PGW has a general ability to provide skillful global medium-range forecasts with different ICs from numerical weather prediction. 展开更多
关键词 deep learning ensemble prediction forecast uncertainty initial condition perturbations CMA-GEPS Pangu-Weather
在线阅读 下载PDF
Causally enhanced initial conditions: A novel soft constraints strategy for physics informed neural networks
10
作者 Wenshu Zha Dongsheng Chen +2 位作者 Daolun Li Luhang Shen Enyuan Chen 《Chinese Physics B》 2025年第4期365-375,共11页
Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.Howev... Physics informed neural networks(PINNs)are a deep learning approach designed to solve partial differential equations(PDEs).Accurately learning the initial conditions is crucial when employing PINNs to solve PDEs.However,simply adjusting weights and imposing hard constraints may not always lead to better learning of the initial conditions;sometimes it even makes it difficult for the neural networks to converge.To enhance the accuracy of PINNs in learning the initial conditions,this paper proposes a novel strategy named causally enhanced initial conditions(CEICs).This strategy works by embedding a new loss in the loss function:the loss is constructed by the derivative of the initial condition and the derivative of the neural network at the initial condition.Furthermore,to respect the causality in learning the derivative,a novel causality coefficient is introduced for the training when selecting multiple derivatives.Additionally,because CEICs can provide more accurate pseudo-labels in the first subdomain,they are compatible with the temporal-marching strategy.Experimental results demonstrate that CEICs outperform hard constraints and improve the overall accuracy of pre-training PINNs.For the 1D-Korteweg–de Vries,reaction and convection equations,the CEIC method proposed in this paper reduces the relative error by at least 60%compared to the previous methods. 展开更多
关键词 initial condition physics informed neural networks temporal march causality coefficient
原文传递
Effect of initial state on microstructure and mechanical properties of medium Mn steel after hot stamping
11
作者 Hong-le Li Tian-yin Zhang +3 位作者 Xing Zhang Shao-fei Qu Fernandez Hernandez Borja Xian-hong Han 《Journal of Iron and Steel Research International》 2025年第11期3883-3893,共11页
The impact of various initial states on the ultimate mechanical properties of medium Mn steel(MMnS)following the hot stamping process is revealed.MMnS blanks with three typical initial states were prepared separately,... The impact of various initial states on the ultimate mechanical properties of medium Mn steel(MMnS)following the hot stamping process is revealed.MMnS blanks with three typical initial states were prepared separately,including hot-rolled,cold-rolled and cold-rolled and annealed(CRA).Their microstructures were observed and analyzed by scanning electron microscopy and electron backscatter diffraction,and their mechanical properties were measured by tensile tests following hot stamping and baking treatments.The results reveal that the microstructure of martensite and residual austenite characterizes the hot-stamped MMnS across different rolling conditions,with CRA state exhibiting a clearly higher residual austenite content compared to the other two states.Meanwhile,CRA state boasts not only the highest tensile strength but also the greatest elongation post-hot stamping treatment.The superior comprehensive mechanical properties are attributed to its unique biphase structure of Mn-rich austenite and Mn-poor ferrite,which emerges in CRA state following a 12 h intercritical annealing and can be partially preserved during the hot stamping process.This structure is instrumental in achieving a higher level of residual austenite,consequently leading to enhanced elongation. 展开更多
关键词 Medium Mn steel Hot stamping initial state Residual austenite Chemical heterogeneity
原文传递
Multi-directional deformation and hydraulic conductivity of expansive soils subjected to freeze-thaw cycles from three distinct initial saturation levels
12
作者 Farimah Arabchobdar Hamed Sadeghi +1 位作者 Mostafa Gholami Pouya AliPanahi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5939-5953,共15页
Infrastructure construction in seasonally frozen regions,covering 23%of total land,faces challenges from freeze-thaw(F-T)induced damages.Expansive soils,as an important problematic soil undergo major hydromechanical p... Infrastructure construction in seasonally frozen regions,covering 23%of total land,faces challenges from freeze-thaw(F-T)induced damages.Expansive soils,as an important problematic soil undergo major hydromechanical properties changes influenced by F-T cycles.Sand-bentonite mixtures are extensively used for constructing earthen hydraulic barriers in cold regions.This study investigates the influence of F-T cycles on multi-directional strains and anisotropic hydraulic conductivity of different sand-bentonite mixtures prepared at optimum water content and experienced three distinct saturation levels.Results indicate that saturation level and bentonite content significantly influence volumetric strain under F-T cycles.The simultaneous effect of ice lens formation,expanding micro-voids,and suction generated by freezing processes cause different volumetric behaviors at varying saturation degrees.The dry specimen exhibits no strain under F-T cycles,while optimum and saturated specimens experienced final volumetric strains of 1.02%and 3.03%,respectively.Notably,during freezing,the specimen at optimumwater content shrank,while the saturated specimen expanded.Increasing bentonite content from 40%to 70%developed freezing-induced shrinkage,from 1.73%to 4.72%,with higher thaw strain attributed to increased specimen plasticity.Also,dimensional variations revealed the cross-anisotropic nature of specimens,highlighting direct influence of water content on the shrinkage ratio.F-T cycles also increased hydraulic conductivity along both orthogonal directions by two orders of magnitude,while the anisotropy ratio decreased by about 3 after 9 F-T cycles,indicating altered pore structures.F-T cycles induce reduced swelling potential and compressibility over subsequent cycles.Microstructural observations also confirmed the F-T effects on the enhancement of porosity. 展开更多
关键词 Freeze-thaw cycles Sand-bentonite mixtures initial water content Cube triaxial permeameter ANISOTROPY
在线阅读 下载PDF
Thermo-mechanically coupled compatibility conditions in orthogonal curvilinear coordinates:equivalent temperature variation of initially stressed elastomers
13
作者 Mengru ZHANG Mingzhu XU +1 位作者 Weiting CHEN Yapu ZHAO 《Applied Mathematics and Mechanics(English Edition)》 2025年第3期423-446,共24页
The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing c... The initial stresses widely exist in elastic materials.While achieving a continuum stress-free configuration through compatible unloading is desirable,mechanical unloading alone frequently proves insufficient,posing challenges in avoiding virtual stress-free configurations.In this paper,we introduce a novel concept of equivalent temperature variation to counteract the incompatible initial strain.Our focus is on initially stressed cylindrical and spherical elastomers,where we first derive the Saint-Venant,Beltrami-Michell,and Volterra integral conditions in orthogonal curvilinear coordinates using the exterior differential form theory.It is shown that for any given axially or spherically distributed initial stress,an equivalent temperature variation always exists.Furthermore,we propose two innovative initial stress forms based on the steady-state heat conduction.By introducing an equivalent temperature variation,the initial stress can be released through a compatible thermo-mechanical unloading process,offering valuable insights into the constitutive theory of initially stressed elastic materials. 展开更多
关键词 initial stress compatibility condition thermal effect orthogonal curvilinear coordinate Ces`aro-Volterra path integral
在线阅读 下载PDF
Optimizing Feature Selection by Enhancing Particle Swarm Optimization with Orthogonal Initialization and Crossover Operator
14
作者 Indu Bala Wathsala Karunarathne Lewis Mitchell 《Computers, Materials & Continua》 2025年第7期727-744,共18页
Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Effi... Recent advancements in computational and database technologies have led to the exponential growth of large-scale medical datasets,significantly increasing data complexity and dimensionality in medical diagnostics.Efficient feature selection methods are critical for improving diagnostic accuracy,reducing computational costs,and enhancing the interpretability of predictive models.Particle Swarm Optimization(PSO),a widely used metaheuristic inspired by swarm intelligence,has shown considerable promise in feature selection tasks.However,conventional PSO often suffers from premature convergence and limited exploration capabilities,particularly in high-dimensional spaces.To overcome these limitations,this study proposes an enhanced PSO framework incorporating Orthogonal Initializa-tion and a Crossover Operator(OrPSOC).Orthogonal Initialization ensures a diverse and uniformly distributed initial particle population,substantially improving the algorithm’s exploration capability.The Crossover Operator,inspired by genetic algorithms,introduces additional diversity during the search process,effectively mitigating premature convergence and enhancing global search performance.The effectiveness of OrPSOC was rigorously evaluated on three benchmark medical datasets—Colon,Leukemia,and Prostate Tumor.Comparative analyses were conducted against traditional filter-based methods,including Fast Clustering-Based Feature Selection Technique(Fast-C),Minimum Redundancy Maximum Relevance(MinRedMaxRel),and Five-Way Joint Mutual Information(FJMI),as well as prominent metaheuristic algorithms such as standard PSO,Ant Colony Optimization(ACO),Comprehensive Learning Gravitational Search Algorithm(CLGSA),and Fuzzy-Based CLGSA(FCLGSA).Experimental results demonstrated that OrPSOC consistently outperformed these existing methods in terms of classification accuracy,computational efficiency,and result stability,achieving significant improvements even with fewer selected features.Additionally,a sensitivity analysis of the crossover parameter provided valuable insights into parameter tuning and its impact on model performance.These findings highlight the superiority and robustness of the proposed OrPSOC approach for feature selection in medical diagnostic applications and underscore its potential for broader adoption in various high-dimensional,data-driven fields. 展开更多
关键词 Machine learning feature selection classification medical diagnosis orthogonal initialization CROSSOVER particle swarm optimization
在线阅读 下载PDF
Improved physics-informed neural networks incorporating lattice Boltzmann method optimized by tanh robust weight initialization
15
作者 Chenghui Yang Minglei Shan +4 位作者 Mengyu Feng Ling Kuai Yu Yang Cheng Yin Qingbang Han 《Chinese Physics B》 2025年第11期119-129,共11页
Physics-informed neural networks(PINNs)have shown considerable promise for performing numerical simulations in fluid mechanics.They provide mesh-free,end-to-end approaches by embedding physical laws into their loss fu... Physics-informed neural networks(PINNs)have shown considerable promise for performing numerical simulations in fluid mechanics.They provide mesh-free,end-to-end approaches by embedding physical laws into their loss functions.However,when addressing complex flow problems,PINNs still face some challenges such as activation saturation and vanishing gradients in deep network training,leading to slow convergence and insufficient prediction accuracy.We present physics-informed neural networks incorporating lattice Boltzmann method optimized by tanh robust weight initialization(T-PINN-LBM)to address these challenges.This approach fuses the mesoscopic lattice Boltzmann model with the automatic differentiation framework of PINNs.It also implements a tanh robust weight initialization method derived from fixed point analysis.This model effectively mitigates activation and gradient decay in deep networks,improving convergence speed and data efficiency in multiscale flow simulations.We validate the effectiveness of the model on the classical arithmetic example of lid-driven cavity flow.Compared to the traditional Xavier initialized PINN and PINN-LBM,T-PINNLBM reduces the mean absolute error(MAE)by one order of magnitude at the same network depth and maintains stable convergence in deeper networks.The results demonstrate that this model can accurately capture complex flow structures without prior data,providing a new feasible pathway for data-free driven fluid simulation. 展开更多
关键词 lattice Boltzmann method physical-informed neural networks fluid mechanics tanh robust weight initialization
原文传递
Crack sensitivity of high-manganese cryogenic steels in initial solidification during continuous casting
16
作者 Yang Li Johann Winkler +3 位作者 Peter Presoly Christian Bernhard Xu-feng Qin Chang-gui Cheng 《Journal of Iron and Steel Research International》 2025年第3期682-694,共13页
Cryogenic steels,i.e.,steels with maximum toughness at particularly low temperature,are increasingly becoming the focus of research.Cryogenic steels are usually alloyed with 5%–9%nickel.Ni can also be substituted by ... Cryogenic steels,i.e.,steels with maximum toughness at particularly low temperature,are increasingly becoming the focus of research.Cryogenic steels are usually alloyed with 5%–9%nickel.Ni can also be substituted by manganese as an austenite former.These high-manganese cryogenic grades are a cost-effective alternative to nickel-alloyed steels for use in liquefied natural gas storage tanks.The Mn content can then be more than 20 wt.%and lead to problems in production,particularly in the continuous casting process.In continuous casting of high-Mn-grades,quality issues and even breakout may result from the initial solidification behavior of the steel grades at high temperatures.Hot cracks form when a critical load is exceeded during solidification,close to the solidus temperature of the steel.A selected high-Mn-steel grade was characterized with respect to liquidus and solidus temperatures by means of thermal analysis and computational thermodynamics.In addition,so-called submerged split chill tensile tests were carried out to further understand the crack sensitivity of the solidifying shell for high-manganese cryogenic steels.The results reveal the presence of coarse hot tears,and also,a high frequency of hot cracks was observed at the location with the maximum accumulated strain,which is in line with the applied cracking criterion of Pierer and Bernhard for this investigation.In summary,the initial solidification phase of continuous casting poses a high risk of cracking for high-manganese cryogenic steel. 展开更多
关键词 High-manganese cryogenic steel Submerged split chill tensile test Crack sensitivity initial solidification Hot crack
原文传递
Water pressure relief treatment for protecting the initial support of inclined shafts at high water pressures
17
作者 Yu Zhang Fei Tan +3 位作者 Rui Liu Haijun Zhu Xiaorui Wang Yuyong Jiao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6468-6481,共14页
The safety of the initial support during the construction of inclined shafts in tunnels traversing through high-hydraulic-pressure surrounding rocks is paramount.This study examines a high-hydraulic-pressure inclined ... The safety of the initial support during the construction of inclined shafts in tunnels traversing through high-hydraulic-pressure surrounding rocks is paramount.This study examines a high-hydraulic-pressure inclined shaft of a tunnel in Western Sichuan Province to analyze the damage characteristics of the initial support and propose a radial drainage and decompression treatment method.Field monitoring was conducted to assess the load and deformation of the initial support structure,and on-site investigations identified the distribution of cracked areas.In addition,numerical simulations were performed to evaluate the force and deformation characteristics of the initial support structure,which were then compared with field observations for validation.The variations in the lateral pressure coefficient and water pressure were evaluated.The results revealed that damage was primarily concentrated in the shoulder,spring line,and knee areas,with the bending moment at the knee increasing by up to 66.9%.The application of the radial drainage and decompression treatment method effectively reduced water pressure loads on the initial support.Post-treatment analysis indicated significant reductions in axial force and bending moment,enhancing structural stability.These findings provide valuable insights for improving the safety and durability of initial support systems in inclined shafts of high-hydraulicpressure railroad tunnels. 展开更多
关键词 TUNNEL Inclined shaft High water pressure initial support failure treatment Lateral pressure coefficient Numerical model
在线阅读 下载PDF
Equilateral Triangular Array Formation Configuration Initialization Control for Space⁃Based Gravitational Wave Observatory
18
作者 PAN Zhengxu BANDO Mai +1 位作者 ZHU Zhanxia HOKAMOTO Shinji 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第S1期12-25,共14页
This paper presents an analysis of an equilateral triangular array formation initialization for space-based gravitational wave observatory(GWO)near Lagrange points in the circular-restricted three-body problem.A stabl... This paper presents an analysis of an equilateral triangular array formation initialization for space-based gravitational wave observatory(GWO)near Lagrange points in the circular-restricted three-body problem.A stable configuration is essential for the continuous observation of gravitational waves(GWs).However,the motion near the collinear libration points is highly unstable.This problem is examined by output regulation theory.Using the tracking aspect,the equilateral triangular array formation is established in two periods and the fuel consumption is calculated.Furthermore,the natural evolution of the formation without control input is analyzed,and the effective stability duration is quantified to determine the timing of control interventions.Finally,to observe the GWs in same direction with different frequency bands,scale reconfiguration is employed. 展开更多
关键词 space-based gravitational wave observatory equilateral triangular array formation initialization Lagrange point output regulation theory
在线阅读 下载PDF
THE ASYMPTOTIC BEHAVIOR OF SOLUTION FOR THE SINGULARLY PERTURBED INITIAL BOUNDARY VALUE PROBLEMS OF THE REACTION DIFFUSION EQUATIONS IN A PART OF DOMAIN
19
作者 刘其林 莫嘉琪 《应用数学和力学》 EI CSCD 北大核心 2001年第10期1075-1080,共6页
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i... A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied. 展开更多
关键词 奇摄动 反应扩散方程 初始边值问题 算子理论 渐近性态
在线阅读 下载PDF
An Initial Perturbation Method for the Multiscale Singular Vector in Global Ensemble Prediction 被引量:5
20
作者 Xin LIU Jing CHEN +6 位作者 Yongzhu LIU Zhenhua HUO Zhizhen XU Fajing CHEN Jing WANG Yanan MA Yumeng HAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期545-563,共19页
Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial pertur... Ensemble prediction is widely used to represent the uncertainty of single deterministic Numerical Weather Prediction(NWP) caused by errors in initial conditions(ICs). The traditional Singular Vector(SV) initial perturbation method tends only to capture synoptic scale initial uncertainty rather than mesoscale uncertainty in global ensemble prediction. To address this issue, a multiscale SV initial perturbation method based on the China Meteorological Administration Global Ensemble Prediction System(CMA-GEPS) is proposed to quantify multiscale initial uncertainty. The multiscale SV initial perturbation approach entails calculating multiscale SVs at different resolutions with multiple linearized physical processes to capture fast-growing perturbations from mesoscale to synoptic scale in target areas and combining these SVs by using a Gaussian sampling method with amplitude coefficients to generate initial perturbations. Following that, the energy norm,energy spectrum, and structure of multiscale SVs and their impact on GEPS are analyzed based on a batch experiment in different seasons. The results show that the multiscale SV initial perturbations can possess more energy and capture more mesoscale uncertainties than the traditional single-SV method. Meanwhile, multiscale SV initial perturbations can reflect the strongest dynamical instability in target areas. Their performances in global ensemble prediction when compared to single-scale SVs are shown to(i) improve the relationship between the ensemble spread and the root-mean-square error and(ii) provide a better probability forecast skill for atmospheric circulation during the late forecast period and for short-to medium-range precipitation. This study provides scientific evidence and application foundations for the design and development of a multiscale SV initial perturbation method for the GEPS. 展开更多
关键词 multiscale uncertainty singular vector initial perturbation global ensemble prediction system
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部