摘要
We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.
We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.
基金
supported by grants from the National Science Foundation of China (10971031
11271079
11075055)
Doctoral Programs Foundation of the Ministry of Education of China
the Shanghai Shuguang Tracking Project (08GG01)