BACKGROUND Cognitive impairment is a major cause of disability in patients who have suffered from a stroke,and cognitive rehabilitation interventions show promise for improving memory.AIM To examine the effectiveness ...BACKGROUND Cognitive impairment is a major cause of disability in patients who have suffered from a stroke,and cognitive rehabilitation interventions show promise for improving memory.AIM To examine the effectiveness of virtual reality(VR)and non-VR(NVR)cognitive rehabilitation techniques for improving memory in patients after stroke.METHODS An extensive and thorough search was executed across five pertinent electronic databases:Cumulative Index to Nursing and Allied Health Literature;MEDLINE(PubMed);Scopus;ProQuest Central;and Google Scholar.This systematic review was conducted following the preferred reporting items for systematic reviews and meta-analyses guideline.Studies that recruited participants who experienced a stroke,utilized cognitive rehabilitation interventions,and published in the last 10 years were included in the review.RESULTS Thirty studies met the inclusion criteria.VR interventions significantly improved memory and cognitive function(mean difference:4.2±1.3,P<0.05),whereas NVR(including cognitive training,music,and exercise)moderately improved memory.Compared with traditional methods,technology-driven VR approaches were particularly beneficial for enhancing daily cognitive tasks.CONCLUSION VR and NVR reality interventions are beneficial for post-stroke cognitive recovery,with VR providing enhanced immersive experiences.Both approaches hold transformative potential for post-stroke rehabilitation.展开更多
Songji Ancient Town in Yongchuan District,Chongqing,is a famous historical and cultural town in China and a national AAAA-level tourist attraction.In recent years,combining its unique historical and cultural heritage,...Songji Ancient Town in Yongchuan District,Chongqing,is a famous historical and cultural town in China and a national AAAA-level tourist attraction.In recent years,combining its unique historical and cultural heritage,the scenic area has developed research travel products themed on intangible cultural heritage and red tourism,attracting students from across the country to experience it.On the other hand,in the context of the deepening of the“double reduction”policy and the concept of a“high-quality education system,”the educational connotation of Songji Ancient Town’s research products is constantly enriching.Based on this,this article will combine the RMP theory to explore strategies for improving satisfaction with Yongchuan District’s“Songji Ancient Town Research Products”under a high-quality education system,to promote the development of the scenic area’s research experience projects and overall tourism service levels.展开更多
With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown ma...With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown malicious samples,they require a large number of new samples for retraining.Considering the cost of data collection and labeling,data augmentation is an ideal solution.We propose an optimized noise-based traffic data augmentation system,ONTDAS.The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise.The noise is injected into the original samples for data augmentation.Then,an improved bagging algorithm is used to integrate all the base traffic classifiers trained on noised datasets.The experiments verify ONTDAS on 6 types of base classifiers and 4 publicly available datasets respectively.The results show that ONTDAS can effectively enhance the traffic classifiers’performance and significantly improve their generalizability on unknown malicious samples.The system can also alleviate dataset imbalance.Moreover,the performance of ONTDAS is significantly superior to the existing data augmentation methods mentioned.展开更多
To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflectio...To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.展开更多
High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 syst...High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.展开更多
Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction ...Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction harvests light energy to synthesize ATP and NADPH through an electron transport chain,and as well as giving out O_(2);dark reaction fixes CO_(2) into six carbon sugars by utilizing NADPH and energy from ATP.Subsequently,plants convert optical energy into chemical energy for maintaining growth and development through absorbing light energy.Here,firstly,we highlighted the biological importance of photosynthesis,and hormones and metabolites,photosynthetic and regulating enzymes,and signaling components that collectively regulate photosynthesis in tomato.Next,we reviewed the advances in tomato photosynthesis,including two aspects of genetic basis and genetic improvement.Numerous genes regulating tomato photosynthesis are gradually uncovered,and the interaction network among those genes remains to be constructed.Finally,the photosynthesis occurring in fruit of tomato and the relationship between photosynthesis in leaf and fruit were discussed.Leaves and fruits are photosynthate sources and sinks of tomato respectively,and interaction between photosynthesis in leaf and fruit exists.Additionally,future perspectives that needs to be addressed on tomato photosynthesis were proposed.展开更多
This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, s...This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system.There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.展开更多
Chlorophyll a(Chl a)is a key photosynthetic pigment and an essential indicator of phytoplankton biomass.Accurate Chl a measurements are crucial for understanding marine biogeochemical processes.China launched the Chin...Chlorophyll a(Chl a)is a key photosynthetic pigment and an essential indicator of phytoplankton biomass.Accurate Chl a measurements are crucial for understanding marine biogeochemical processes.China launched the Chinese Ocean Color and Temperature Scanner(COCTS)aboard the HY-1D satellite in 2020,yet its Chl a products require further validation in complex coastal waters.This study assesses HY-1D Chl a products in the Bohai and Yellow Seas,two optically complex coastal regions,using in situ data collected during multiple cruises.Additionally,we compare HY-1D Chl a products with those from the Moderate Resolution Imaging Spectroradiometer(MODIS)and the Visible Infrared Imaging Radiometer Suite(VIIRS).We observed that although Chl a products from HY-1D are generally consistent with those from the MODIS and VIIRS in spatial distribution,there are still significant errors when compared with in situ data.Therefore,we developed a new blended algorithm to improve the accuracy of HY-1D Chl a products.The algorithm distinguishes between turbid and relatively clean waters using a classification index based on the ratio of remote sensing reflectance(R_(rs)(λ)).After the initial classification,we developed targeted algorithms based on the optical properties of different water bodies.The new model shows a significant improvement,reducing the mean absolute percentage error(MAPE)from 43.1%to 24.3%.Additionally,merging Chl a data from HY-1D,MODIS,and VIIRS maintains good accuracy,with HY-1D Chl a products significantly enhancing data coverage and robustness.This research provides important support for producing high-quality HY-1D Chl a products for coastal waters.展开更多
In addressing problematic soils,geotechnical engineers employ two key strategies:compatibility and improvement.This study focuses on soft and CL deltaic sediments,and seeks to enhance cementation by investigating micr...In addressing problematic soils,geotechnical engineers employ two key strategies:compatibility and improvement.This study focuses on soft and CL deltaic sediments,and seeks to enhance cementation by investigating microbially-induced calcium carbonate precipitation(MICP).Sporosarcina pasteurii bacteria,together with a cementation solution(urea and calcium-containing salt),were electrokinetically injected into deltaic clay soil from the Telar River in Iran.The initial samples,with a dry unit weight(γ_(d))of 12.75 kN/m^(3),underwent injections in two modes:simultaneous injection of the bacterial and cementation solutions and individual injection in a sequential order.Unconfined compression strength tests and laboratory vane shear tests were conducted to assess changes in soil strength parameters,while a consolidation test was performed to investigate alterations in soil settlement parameters.A comparative analysis with an electroosmosis control sample revealed a remarkable increase in compressive strength and undrained shear strength for MICP bio-electrokinetic improvement.Moreover,the consolidation test demonstrated that the compression index(C_(c))and recompression index(C_(r))exhibited a more pronounced decline in the simultaneous injection than individual injection.This highlights the dual impact of the bio-electrokinetic method,namely the enhancement of shear strength and the mitigation of settlement in deltaic clay soil.The calcium carbonate content was measured for the samples,and the results indicated a higher degree of participation for the samples subjected to simultaneous injection.Microstructure analyses were conducted on samples,and calcite and vaterite were observed in biocemented samples.展开更多
Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock ...Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations.展开更多
[Objectives]Farmland ginseng cultivation,as a sustainable alternative to traditional forest-clearing ginseng planting,requires systematic evaluation of soil optimization strategies.This study aimed to quantify the lin...[Objectives]Farmland ginseng cultivation,as a sustainable alternative to traditional forest-clearing ginseng planting,requires systematic evaluation of soil optimization strategies.This study aimed to quantify the linkage between soil improvement outcomes and ginseng(Panax ginseng)yield across five regions in Yanbian Korean Autonomous Prefecture.[Methods]Soil improvement trials were conducted using farmland soils,with forest soils as the baseline.Soil nutrient contents were measured via soil agrochemical analysis method using a continuous flow analyzer.Statistical approaches,including significance tests,correlation analysis,and regression analysis,were applied to identify key factors influencing yield.[Results]Ginseng yield exhibited a significant positive correlation with organic matter content and available phosphorus,but a negative correlation with electrical conductivity,ammonium nitrogen,and available potassium.Wangqing and Liucai regions achieved post-improvement yields equivalent to 94%and 88%of forest soil yields,respectively,demonstrating the highest soil similarity to forest ecosystems.[Conclusions]Region-specific soil improvement protocols in Wangqing and Liucai show high replicability and efficacy.These strategies can serve as benchmarks for sustainable farmland ginseng cultivation,minimizing ecological disruption while maintaining productivity.展开更多
The modernization of the Traditional East Medicine industry has increasingly emphasized the role of collaborative innovation across the entire industrial chain.This paper investigates the mechanisms by which experts i...The modernization of the Traditional East Medicine industry has increasingly emphasized the role of collaborative innovation across the entire industrial chain.This paper investigates the mechanisms by which experts in cultivation,processing,R&D,production,and clinical application interact to enhance overall efficiency.By analyzing the bottlenecks in resource allocation,knowledge integration,and institutional design,the study proposes a comprehensive framework of collaborative mechanisms.The results highlight that multi-dimensional collaboration not only improves innovation efficiency but also accelerates the translation of scientific research into industrial outcomes.The findings provide theoretical support and practical implications for improving the synergy of experts in the Traditional East Medicine industry and contribute to the sustainable development of traditional medicine under modern industrial demands.展开更多
BACKGROUND At present,there is a lack of non-invasive indicators to evaluate the changes in endoscopic activity between two visits for patients with Crohn's disease(CD).AIM To develop a model for predicting whethe...BACKGROUND At present,there is a lack of non-invasive indicators to evaluate the changes in endoscopic activity between two visits for patients with Crohn's disease(CD).AIM To develop a model for predicting whether endoscopic activity will improve in CD patients.METHODS This is a single-center retrospective study that included patients diagnosed with CD from January 2014 to December 2022.The patients were randomly divided into a modeling group(70%)and an internal validation group(30%),with an external validation group from January 2023 to March 2024.Univariate and binary logistic regression analyses were conducted to identify independent risk factors,which were used to construct a nomogram model.The model's performance was evaluated using receiver operating characteristic curves,calibration curves,and decision curve analysis(DCA).Additionally,further sensitivity analyses were performed.RESULTS One hundred seventy patients were included in the training group,while 64 were included in the external validation group.A binary logistic stepwise regression analysis revealed that the changes in the amplitudes of albumin(ALB)and fibrinogen(FIB)were independent risk factors for endoscopic improvement.A nomogram model was developed based on these risk factors.The area under the curve of the model for the training group,internal validation group,and external validation group were 0.802,0.788,and 0.787,respectively.The average absolute errors of the calibration curves were 0.011,0.016,and 0.018,respectively.DCA indicated that the model performs well in clinical practice.Additionally,sensitivity analysis demonstrated that the model has strong robustness and applicability.CONCLUSION Our study shows that changes in the amplitudes of ALB and FIB are effective predictors of endoscopic improvement in patients with CD during follow-up visits compared to their previous ones.展开更多
Myeloblastosis(MYB)transcription factors(TFs)are evolutionarily conserved regulatory proteins that are crucial for plantgrowth,development,secondarymetabolism,andstress adaptation.Recent studieshavehighlighted their c...Myeloblastosis(MYB)transcription factors(TFs)are evolutionarily conserved regulatory proteins that are crucial for plantgrowth,development,secondarymetabolism,andstress adaptation.Recent studieshavehighlighted their crucial role in coordinating growth–defense trade-offs through transcriptional regulation of key biosynthetic and stress-response genes.Despite extensive functional characterization in model plants such as Arabidopsis thaliana,systematically evaluating the broader functional landscape of MYB TFs across diverse species and contexts remains necessary.This systematic review integrates results from 24 peer-reviewed studies sourced from Scopus and Web of Science,focusing on the functional diversity of MYB TFs,particularly in relation to abiotic stress tolerance,metabolic regulation,and plant developmental processes.Advances in genomic technologies,such as transcriptomics,genome editing,and comparative phylogenetics,have considerably enhanced our understanding of MYB-mediated regulatory mechanisms.These tools have facilitated the identification and functional characterization of MYB genes across model and non-model plant species.Key findings underscore the multifaceted roles of MYB TFs in enhancing stress resilience,modulating anthocyanin and flavonoid biosynthesis,and contributing to yield-related traits,thereby highlighting their potential applications in crop improvement and sustainable agriculture.However,critical gaps exist in understanding MYB interactions within complex regulatory networks,particularly in underrepresented plant species and ecological contexts.This review consolidates current knowledge as well as identifies research gaps and proposes future directions to advance the understanding and application of MYB TFs.The insights derived from this study underscore their transformative potential in addressing global challenges including food security and climate resilience through innovative agricultural practices.展开更多
To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The s...To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.展开更多
ZnIn_(2)S_(4), a typical n-type semiconductor, has received intensive attention due to its suitable bandgap, excellent visible light absorption performance, and simple and fiexible preparation methods. However, its ap...ZnIn_(2)S_(4), a typical n-type semiconductor, has received intensive attention due to its suitable bandgap, excellent visible light absorption performance, and simple and fiexible preparation methods. However, its application is curbed by photo-generated carrier recombination and photo corrosion. Although constructing S-scheme heterojunctions by combining ZnIn_(2)S_(4)with other semiconductors can solve these problems, the photocatalytic activity of S-scheme heterojunctions can be further improved. Therefore, this short review summarizes modification strategies of ZnIn_(2)S_(4)-based S-scheme heterojunctions. This article also introduces the concept, design principles, and characterization methods of ZnIn_(2)S_(4)-based S-scheme heterojunction. Finally, current challenges and future research focuses related to ZnIn_(2)S_(4)-based S-scheme heterojunctions are discussed and summarized, including the utilization of advanced in-situ characterization techniques to further illuminate the photocatalytic mechanism, the DFT-assisted design of catalysts to increase the selectivity of products during photocatalytic CO_(2) reduction, and extending the photoresponse of ZnIn_(2)S_(4)-based S-scheme heterojunction to near-infrared range, etc.展开更多
CRISPR/Cas9 technology, a revolutionary gene-editing tool, has rapidly garnered attention in plant science owing to its simplicity, high editing efficiency, and cost-effectiveness. Besides, it offers unprecedented pre...CRISPR/Cas9 technology, a revolutionary gene-editing tool, has rapidly garnered attention in plant science owing to its simplicity, high editing efficiency, and cost-effectiveness. Besides, it offers unprecedented precision and efficiency in the genetic improvement of fruit trees. To date, this technology has been widely utilized to enhance fruit quality, improve stress resistance, and mediate growth and development. These applications demonstrate its immense potential in fruit tree breeding. Looking ahead, advancements in editing efficiency, expanded application scopes, comprehensive safety assessments, and improved regulatory frameworks are expected to further broaden the role of CRISPR/Cas9 in fruit tree breeding, thereby driving the fruit tree industry toward higher yield, superior quality, enhanced stress resilience, higher efficiency, and contributing to global food security and sustainable agricultural development. This article outlines the fundamental principles of CRISPR/Cas9 gene editing technology, its applications in plants (including fruit trees), and its pivotal role in genetic improvement and germplasm innovation.展开更多
Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-value...Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-values of O^(1)D,NO_(2),HONO,H_(2)O_(2),HCHO,and NO_(3),which are the crucial values for the prediction of the atmospheric oxidation capacity(AOC)and secondary pollutant concentrations such as ozone(O_(3)),secondary organic aerosols(SOA).The J-ML can self-select the optimal“Model+Hyperparameters”without human interference.The evaluated results showed that the J-ML had a good performance to reproduce the J-values wheremost of the correlation(R)coefficients exceed 0.93 and the accuracy(P)values are in the range of 0.68-0.83,comparing with the J-values from observations and from the tropospheric ultraviolet and visible(TUV)radiation model in Beijing,Chengdu,Guangzhou and Shanghai,China.The hourly prediction was also well performed with R from 0.78 to 0.81 for next 3-days and from 0.69 to 0.71 for next 7-days,respectively.Compared with O_(3)concentrations by using J-values from the TUV model,an emission-driven observation-based model(e-OBM)by using the J-values from the J-ML showed a 4%-12%increase in R and 4%-30%decrease in ME,indicating that the J-ML could be used as an excellent supplement to traditional numerical models.The feature importance analysis concluded that the key influential parameter was the surface solar downwards radiation for all J-values,and the other dominant factors for all J-values were 2-m mean temperature,O_(3),total cloud cover,boundary layer height,relative humidity and surface pressure.展开更多
Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influenci...Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influencing consumer preference.These VOCs are mainly derived from amino acids,fatty acids,and terpenoid pathways(Chen et al.,2023).Esters contribute to fruity and sweet notes,whereas terpenes and C_(9) aldehydes/alcohols impart floral and melon-like aromas,respectively(Mayobre et al.,2024).展开更多
Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)framewo...Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms.展开更多
文摘BACKGROUND Cognitive impairment is a major cause of disability in patients who have suffered from a stroke,and cognitive rehabilitation interventions show promise for improving memory.AIM To examine the effectiveness of virtual reality(VR)and non-VR(NVR)cognitive rehabilitation techniques for improving memory in patients after stroke.METHODS An extensive and thorough search was executed across five pertinent electronic databases:Cumulative Index to Nursing and Allied Health Literature;MEDLINE(PubMed);Scopus;ProQuest Central;and Google Scholar.This systematic review was conducted following the preferred reporting items for systematic reviews and meta-analyses guideline.Studies that recruited participants who experienced a stroke,utilized cognitive rehabilitation interventions,and published in the last 10 years were included in the review.RESULTS Thirty studies met the inclusion criteria.VR interventions significantly improved memory and cognitive function(mean difference:4.2±1.3,P<0.05),whereas NVR(including cognitive training,music,and exercise)moderately improved memory.Compared with traditional methods,technology-driven VR approaches were particularly beneficial for enhancing daily cognitive tasks.CONCLUSION VR and NVR reality interventions are beneficial for post-stroke cognitive recovery,with VR providing enhanced immersive experiences.Both approaches hold transformative potential for post-stroke rehabilitation.
文摘Songji Ancient Town in Yongchuan District,Chongqing,is a famous historical and cultural town in China and a national AAAA-level tourist attraction.In recent years,combining its unique historical and cultural heritage,the scenic area has developed research travel products themed on intangible cultural heritage and red tourism,attracting students from across the country to experience it.On the other hand,in the context of the deepening of the“double reduction”policy and the concept of a“high-quality education system,”the educational connotation of Songji Ancient Town’s research products is constantly enriching.Based on this,this article will combine the RMP theory to explore strategies for improving satisfaction with Yongchuan District’s“Songji Ancient Town Research Products”under a high-quality education system,to promote the development of the scenic area’s research experience projects and overall tourism service levels.
基金supported in part by the National Key Research and Development Program of China(No.2022YFB4500800)the National Science Foundation of China(No.42071431).
文摘With the emergence of new attack techniques,traffic classifiers usually fail to maintain the expected performance in real-world network environments.In order to have sufficient generalizability to deal with unknown malicious samples,they require a large number of new samples for retraining.Considering the cost of data collection and labeling,data augmentation is an ideal solution.We propose an optimized noise-based traffic data augmentation system,ONTDAS.The system uses a gradient-based searching algorithm and an improved Bayesian optimizer to obtain optimized noise.The noise is injected into the original samples for data augmentation.Then,an improved bagging algorithm is used to integrate all the base traffic classifiers trained on noised datasets.The experiments verify ONTDAS on 6 types of base classifiers and 4 publicly available datasets respectively.The results show that ONTDAS can effectively enhance the traffic classifiers’performance and significantly improve their generalizability on unknown malicious samples.The system can also alleviate dataset imbalance.Moreover,the performance of ONTDAS is significantly superior to the existing data augmentation methods mentioned.
基金supported by the National Natural Science Foundation of China(No.62071365)the Key Research and Development Program of Shaanxi Province(No.2017ZDCXL-GY-06-02).
文摘To improve the quality of the illumination distribution,one novel indoor visible light communication(VLC)system,which is jointly assisted by the angle-diversity transceivers and simultaneous transmission and reflection-intelligent reflecting surface(STAR-IRS),has been proposed in this work.A Harris Hawks optimizer algorithm(HHOA)-based two-stage alternating iteration algorithm(TSAIA)is presented to jointly optimize the magnitude and uniformity of the received optical power.Besides,to demonstrate the superiority of the proposed strategy,several benchmark schemes are simulated and compared.Results showed that compared to other optimization strategies,the TSAIA scheme is more capable of balancing the average value and variance of the received optical power,when the maximal ratio combining(MRC)strategy is adopted at the receiver.Moreover,as the number of the STAR-IRS elements increases,the optical power variance of the system optimized by TSAIA scheme would become smaller while the average optical power would get larger.This study will benefit the design of received optical power distribution for indoor VLC systems.
基金financially supported by National Key Research and Development Program of China(2016YFD0100501)the National Natural Science Foundation of China(31871241,31371233)+3 种基金the Natural Science Foundation of Jiangsu Province(BE2017345,PZCZ201702,BE2018351)the Research and Innovation Program of Postgraduate in Jiangsu Province(KYCX17_1886)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Yangzhou University International Academic Exchange Fund。
文摘High grain protein content(GPC) reduces rice eating and cooking quality(ECQ). We generated OsAAP6 and OsAAP10 knockout mutants in three high-yielding japonica varieties and one japonica line using the CRISPR/Cas9 system. Mutation efficiency varied with genetic background in the T_0 generation, and GPC in the T_1 generation decreased significantly,owing mainly to a reduction in glutelin content. Amylose content was down-regulated significantly in some Osaap6 and all Osaap10 mutants. The increased taste value of these mutants was supported by Rapid Visco Analysis(RVA) profiles, which showed higher peak viscosity and breakdown viscosity and lower setback viscosity than the wild type. There were no significant deficiencies in agronomic traits of the mutants. Targeted mutagenesis of OsAAP6 and OsAAP10, especially OsAAP10, using the CRISPR/Cas9 system can rapidly reduce GPC and improve ECQ of rice, providing a new strategy for the breeding cultivars with desired ECQ.
基金supported by grants from the National Key Research&Development Plan(Grants Nos.2022YFF10030022022YFD1200502)+7 种基金National Natural Science Foundation of China(Grant Nos.3237269631991182)Wuhan Biological Breeding Major Project(Grant No.2022021302024852)Key Project of Hubei Hongshan Laboratory(2021hszd007)HZAU-AGIS Cooperation Fund(Grant No.SZYJY2023022)Funds for High Quality Development of Hubei Seed Industry(HBZY2023B004)Hubei Agriculture Research System(2023HBSTX4-06)Hubei Key Research&Development Plan(Grants Nos.2022BBA0066,2022BBA0062)。
文摘Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction harvests light energy to synthesize ATP and NADPH through an electron transport chain,and as well as giving out O_(2);dark reaction fixes CO_(2) into six carbon sugars by utilizing NADPH and energy from ATP.Subsequently,plants convert optical energy into chemical energy for maintaining growth and development through absorbing light energy.Here,firstly,we highlighted the biological importance of photosynthesis,and hormones and metabolites,photosynthetic and regulating enzymes,and signaling components that collectively regulate photosynthesis in tomato.Next,we reviewed the advances in tomato photosynthesis,including two aspects of genetic basis and genetic improvement.Numerous genes regulating tomato photosynthesis are gradually uncovered,and the interaction network among those genes remains to be constructed.Finally,the photosynthesis occurring in fruit of tomato and the relationship between photosynthesis in leaf and fruit were discussed.Leaves and fruits are photosynthate sources and sinks of tomato respectively,and interaction between photosynthesis in leaf and fruit exists.Additionally,future perspectives that needs to be addressed on tomato photosynthesis were proposed.
基金project is supported by the National Key R&D Program of China (No. 2016YFC0501307)the Key R&D Program of Ningxia Hui Autonomous Region (No. 2018BBF23008)
文摘This work presents a reference system overview to improve the efficiency of biological improvement of saline-alkali soil developed during the last thirty years, ranging from connotation, general methods and species, soil desalination, soil structure, soil organic content, microbial flora, enzyme activity, yield and economic benefits. The reference system presented is divided into three main groups: suitable varieties, suitable cultivation measures, and a comprehensive evaluation system.There has been a lot of research on biological improvement of saline alkali soil, but these studies are very fragmented and lack a comprehensive standard system. Also, there is a lack of practical significance, particularly with regard to optimal species, densities and times of sowing for particular regions. On the other hand, the corresponding cultivation measure is very important. Therefore, a reference system plays an important role to the effect of biological improvement of saline alkali soil.
基金The National Key Research and Development Program of China under contract No.2021YFB3901304the National Natural Science Foundation of China under contract No.42842176181,42476173,and 42176179the Natural Science Foundation of Jiangsu Province under contract No.BK20211289.
文摘Chlorophyll a(Chl a)is a key photosynthetic pigment and an essential indicator of phytoplankton biomass.Accurate Chl a measurements are crucial for understanding marine biogeochemical processes.China launched the Chinese Ocean Color and Temperature Scanner(COCTS)aboard the HY-1D satellite in 2020,yet its Chl a products require further validation in complex coastal waters.This study assesses HY-1D Chl a products in the Bohai and Yellow Seas,two optically complex coastal regions,using in situ data collected during multiple cruises.Additionally,we compare HY-1D Chl a products with those from the Moderate Resolution Imaging Spectroradiometer(MODIS)and the Visible Infrared Imaging Radiometer Suite(VIIRS).We observed that although Chl a products from HY-1D are generally consistent with those from the MODIS and VIIRS in spatial distribution,there are still significant errors when compared with in situ data.Therefore,we developed a new blended algorithm to improve the accuracy of HY-1D Chl a products.The algorithm distinguishes between turbid and relatively clean waters using a classification index based on the ratio of remote sensing reflectance(R_(rs)(λ)).After the initial classification,we developed targeted algorithms based on the optical properties of different water bodies.The new model shows a significant improvement,reducing the mean absolute percentage error(MAPE)from 43.1%to 24.3%.Additionally,merging Chl a data from HY-1D,MODIS,and VIIRS maintains good accuracy,with HY-1D Chl a products significantly enhancing data coverage and robustness.This research provides important support for producing high-quality HY-1D Chl a products for coastal waters.
文摘In addressing problematic soils,geotechnical engineers employ two key strategies:compatibility and improvement.This study focuses on soft and CL deltaic sediments,and seeks to enhance cementation by investigating microbially-induced calcium carbonate precipitation(MICP).Sporosarcina pasteurii bacteria,together with a cementation solution(urea and calcium-containing salt),were electrokinetically injected into deltaic clay soil from the Telar River in Iran.The initial samples,with a dry unit weight(γ_(d))of 12.75 kN/m^(3),underwent injections in two modes:simultaneous injection of the bacterial and cementation solutions and individual injection in a sequential order.Unconfined compression strength tests and laboratory vane shear tests were conducted to assess changes in soil strength parameters,while a consolidation test was performed to investigate alterations in soil settlement parameters.A comparative analysis with an electroosmosis control sample revealed a remarkable increase in compressive strength and undrained shear strength for MICP bio-electrokinetic improvement.Moreover,the consolidation test demonstrated that the compression index(C_(c))and recompression index(C_(r))exhibited a more pronounced decline in the simultaneous injection than individual injection.This highlights the dual impact of the bio-electrokinetic method,namely the enhancement of shear strength and the mitigation of settlement in deltaic clay soil.The calcium carbonate content was measured for the samples,and the results indicated a higher degree of participation for the samples subjected to simultaneous injection.Microstructure analyses were conducted on samples,and calcite and vaterite were observed in biocemented samples.
基金supported by financial grants from the National Natural Science Foundation of China(Grant Nos.52334003 and 52104111)the National Key R&D Program of China(Grant No.2022YFC2905600)。
文摘Water-weakening presents a promising strategy for the in-situ improvement of rock cuttability.This study unveils the influences of water saturation on the mechanical response and fragmentation characteristics of rock samples.A series of rock-cutting tests using conical pick indentation was conducted on three types of sandstone samples under both dry and water-saturated conditions.The relationships between cutting force and indentation depth,as well as typical cuttability indices are determined and compared for dry and water-saturated samples.The experimental results reveal that the presence of water facilitates shearing failure in rock samples,as well as alleviates the fluctuations in the cutting force-indentation depth curve Furthermore,the peak cutting force(F_(p)),cutting work(W_(p)),and specific energy(SE)undergo apparent decrease after water saturation,whereas the trend in the indentation depth at rock failure(D_(f))varies across different rock types.Additionally,the water-induced percentage reductions in F_(p)and SE correlate positively with the quartz and swelling clay content within the rocks,suggesting that the cuttability improvement due to water saturation is attributed to the combined effects of stress corrosion and frictional reduction.These findings carry significant implications for improving rock cuttability in mechanized excavation of hard rock formations.
基金Supported by National Natural Science Foundation Cultivation Project of Lishui University(036/2024)Municipal-Level Project:Pathways for Establishing Low-carbon Pilot Counties(FGLS202210).
文摘[Objectives]Farmland ginseng cultivation,as a sustainable alternative to traditional forest-clearing ginseng planting,requires systematic evaluation of soil optimization strategies.This study aimed to quantify the linkage between soil improvement outcomes and ginseng(Panax ginseng)yield across five regions in Yanbian Korean Autonomous Prefecture.[Methods]Soil improvement trials were conducted using farmland soils,with forest soils as the baseline.Soil nutrient contents were measured via soil agrochemical analysis method using a continuous flow analyzer.Statistical approaches,including significance tests,correlation analysis,and regression analysis,were applied to identify key factors influencing yield.[Results]Ginseng yield exhibited a significant positive correlation with organic matter content and available phosphorus,but a negative correlation with electrical conductivity,ammonium nitrogen,and available potassium.Wangqing and Liucai regions achieved post-improvement yields equivalent to 94%and 88%of forest soil yields,respectively,demonstrating the highest soil similarity to forest ecosystems.[Conclusions]Region-specific soil improvement protocols in Wangqing and Liucai show high replicability and efficacy.These strategies can serve as benchmarks for sustainable farmland ginseng cultivation,minimizing ecological disruption while maintaining productivity.
文摘The modernization of the Traditional East Medicine industry has increasingly emphasized the role of collaborative innovation across the entire industrial chain.This paper investigates the mechanisms by which experts in cultivation,processing,R&D,production,and clinical application interact to enhance overall efficiency.By analyzing the bottlenecks in resource allocation,knowledge integration,and institutional design,the study proposes a comprehensive framework of collaborative mechanisms.The results highlight that multi-dimensional collaboration not only improves innovation efficiency but also accelerates the translation of scientific research into industrial outcomes.The findings provide theoretical support and practical implications for improving the synergy of experts in the Traditional East Medicine industry and contribute to the sustainable development of traditional medicine under modern industrial demands.
文摘BACKGROUND At present,there is a lack of non-invasive indicators to evaluate the changes in endoscopic activity between two visits for patients with Crohn's disease(CD).AIM To develop a model for predicting whether endoscopic activity will improve in CD patients.METHODS This is a single-center retrospective study that included patients diagnosed with CD from January 2014 to December 2022.The patients were randomly divided into a modeling group(70%)and an internal validation group(30%),with an external validation group from January 2023 to March 2024.Univariate and binary logistic regression analyses were conducted to identify independent risk factors,which were used to construct a nomogram model.The model's performance was evaluated using receiver operating characteristic curves,calibration curves,and decision curve analysis(DCA).Additionally,further sensitivity analyses were performed.RESULTS One hundred seventy patients were included in the training group,while 64 were included in the external validation group.A binary logistic stepwise regression analysis revealed that the changes in the amplitudes of albumin(ALB)and fibrinogen(FIB)were independent risk factors for endoscopic improvement.A nomogram model was developed based on these risk factors.The area under the curve of the model for the training group,internal validation group,and external validation group were 0.802,0.788,and 0.787,respectively.The average absolute errors of the calibration curves were 0.011,0.016,and 0.018,respectively.DCA indicated that the model performs well in clinical practice.Additionally,sensitivity analysis demonstrated that the model has strong robustness and applicability.CONCLUSION Our study shows that changes in the amplitudes of ALB and FIB are effective predictors of endoscopic improvement in patients with CD during follow-up visits compared to their previous ones.
基金funded by the Fundamental Research Grant Scheme(Grant No.FRGS/1/2023/STG03/UM/02/2)Universiti Malaya RU Grant(RU002-2025B).
文摘Myeloblastosis(MYB)transcription factors(TFs)are evolutionarily conserved regulatory proteins that are crucial for plantgrowth,development,secondarymetabolism,andstress adaptation.Recent studieshavehighlighted their crucial role in coordinating growth–defense trade-offs through transcriptional regulation of key biosynthetic and stress-response genes.Despite extensive functional characterization in model plants such as Arabidopsis thaliana,systematically evaluating the broader functional landscape of MYB TFs across diverse species and contexts remains necessary.This systematic review integrates results from 24 peer-reviewed studies sourced from Scopus and Web of Science,focusing on the functional diversity of MYB TFs,particularly in relation to abiotic stress tolerance,metabolic regulation,and plant developmental processes.Advances in genomic technologies,such as transcriptomics,genome editing,and comparative phylogenetics,have considerably enhanced our understanding of MYB-mediated regulatory mechanisms.These tools have facilitated the identification and functional characterization of MYB genes across model and non-model plant species.Key findings underscore the multifaceted roles of MYB TFs in enhancing stress resilience,modulating anthocyanin and flavonoid biosynthesis,and contributing to yield-related traits,thereby highlighting their potential applications in crop improvement and sustainable agriculture.However,critical gaps exist in understanding MYB interactions within complex regulatory networks,particularly in underrepresented plant species and ecological contexts.This review consolidates current knowledge as well as identifies research gaps and proposes future directions to advance the understanding and application of MYB TFs.The insights derived from this study underscore their transformative potential in addressing global challenges including food security and climate resilience through innovative agricultural practices.
基金National Natural Science Foundation of China under Grant No.52278534Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Nos. XDA23010300 and XDA23010000)the National Natural Science Foundation of China (Nos. 51878644 and 41573138)。
文摘ZnIn_(2)S_(4), a typical n-type semiconductor, has received intensive attention due to its suitable bandgap, excellent visible light absorption performance, and simple and fiexible preparation methods. However, its application is curbed by photo-generated carrier recombination and photo corrosion. Although constructing S-scheme heterojunctions by combining ZnIn_(2)S_(4)with other semiconductors can solve these problems, the photocatalytic activity of S-scheme heterojunctions can be further improved. Therefore, this short review summarizes modification strategies of ZnIn_(2)S_(4)-based S-scheme heterojunctions. This article also introduces the concept, design principles, and characterization methods of ZnIn_(2)S_(4)-based S-scheme heterojunction. Finally, current challenges and future research focuses related to ZnIn_(2)S_(4)-based S-scheme heterojunctions are discussed and summarized, including the utilization of advanced in-situ characterization techniques to further illuminate the photocatalytic mechanism, the DFT-assisted design of catalysts to increase the selectivity of products during photocatalytic CO_(2) reduction, and extending the photoresponse of ZnIn_(2)S_(4)-based S-scheme heterojunction to near-infrared range, etc.
基金Supported by Scientific Research Start-up Fund for PhD.of Zhaoqing University(210046)the Zhaoqing Science and Technology Innovation Guidance Project(231017174162871,241226220091239).
文摘CRISPR/Cas9 technology, a revolutionary gene-editing tool, has rapidly garnered attention in plant science owing to its simplicity, high editing efficiency, and cost-effectiveness. Besides, it offers unprecedented precision and efficiency in the genetic improvement of fruit trees. To date, this technology has been widely utilized to enhance fruit quality, improve stress resistance, and mediate growth and development. These applications demonstrate its immense potential in fruit tree breeding. Looking ahead, advancements in editing efficiency, expanded application scopes, comprehensive safety assessments, and improved regulatory frameworks are expected to further broaden the role of CRISPR/Cas9 in fruit tree breeding, thereby driving the fruit tree industry toward higher yield, superior quality, enhanced stress resilience, higher efficiency, and contributing to global food security and sustainable agricultural development. This article outlines the fundamental principles of CRISPR/Cas9 gene editing technology, its applications in plants (including fruit trees), and its pivotal role in genetic improvement and germplasm innovation.
基金supported by the National Key Project of the Ministry of Science and Technology of China(No.2022YFC3701200)the National Natural Science Foundation of China(No.42090030).
文摘Based on observed meteorological elements,photolysis rates(J-values)and pollutant concentrations,an automated J-values predicting system by machine learning(J-ML)has been developed to reproduce and predict the J-values of O^(1)D,NO_(2),HONO,H_(2)O_(2),HCHO,and NO_(3),which are the crucial values for the prediction of the atmospheric oxidation capacity(AOC)and secondary pollutant concentrations such as ozone(O_(3)),secondary organic aerosols(SOA).The J-ML can self-select the optimal“Model+Hyperparameters”without human interference.The evaluated results showed that the J-ML had a good performance to reproduce the J-values wheremost of the correlation(R)coefficients exceed 0.93 and the accuracy(P)values are in the range of 0.68-0.83,comparing with the J-values from observations and from the tropospheric ultraviolet and visible(TUV)radiation model in Beijing,Chengdu,Guangzhou and Shanghai,China.The hourly prediction was also well performed with R from 0.78 to 0.81 for next 3-days and from 0.69 to 0.71 for next 7-days,respectively.Compared with O_(3)concentrations by using J-values from the TUV model,an emission-driven observation-based model(e-OBM)by using the J-values from the J-ML showed a 4%-12%increase in R and 4%-30%decrease in ME,indicating that the J-ML could be used as an excellent supplement to traditional numerical models.The feature importance analysis concluded that the key influential parameter was the surface solar downwards radiation for all J-values,and the other dominant factors for all J-values were 2-m mean temperature,O_(3),total cloud cover,boundary layer height,relative humidity and surface pressure.
基金supported by Project of Renovation Capacity Building for the Young Sci-Tech Talents Sponsored by Xinjiang Academy of Agricultural Sciences(Grant No.xjnkq-2021011)Key Research and Development Program of Hainan Province(Grant No.ZDYF2025XDNY089)+2 种基金Project of Fund for Stable Support to Agricultural Sci-Tech Renovation(Grant No.xjnkywdzc-2023001-35)Guangxi Agricultural Science and Technology Project,China Agriculture Research System of MOF and MORA(CARS-25)the Fundamental Research Funds for the Central Universities(Grant No.2662024JC004)。
文摘Melon(Cucumis melo L.)is a globally important fruit crop appreciated for its sweet taste,unique aroma,and nutritional value(Kaleem et al.,2024).Aroma,shaped by volatile organic compounds(VOCs),is a key trait influencing consumer preference.These VOCs are mainly derived from amino acids,fatty acids,and terpenoid pathways(Chen et al.,2023).Esters contribute to fruity and sweet notes,whereas terpenes and C_(9) aldehydes/alcohols impart floral and melon-like aromas,respectively(Mayobre et al.,2024).
基金supported by the National Natural Science Foundation of China(Grant Nos.12072105,11932006,and 52308498)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220976).
文摘Dynamic wake field information is vital for the optimized design and control of wind farms.Combined with sparse measurement data from light detection and ranging(LiDAR),the physics-informed neural network(PINN)frameworks have recently been employed for forecasting freestream wind and wake fields.However,these PINN frameworks face challenges of low prediction accuracy and long training times.Therefore,this paper constructed a PINN framework for dynamic wake field prediction by integrating two accuracy improvement strategies and a step-by-step training time saving strategy.The results showed that the different performance improvement routes significantly improved the overall performance of the PINN.The accuracy and efficiency of the PINN with spatiotemporal improvement strategies were validated via LiDAR-measured data from a wind farm in Shandong province,China.This paper sheds light on load reduction,efficiency improvement,intelligent operation and maintenance of wind farms.