Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help...Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.展开更多
ZnIn_(2)S_(4), a typical n-type semiconductor, has received intensive attention due to its suitable bandgap, excellent visible light absorption performance, and simple and fiexible preparation methods. However, its ap...ZnIn_(2)S_(4), a typical n-type semiconductor, has received intensive attention due to its suitable bandgap, excellent visible light absorption performance, and simple and fiexible preparation methods. However, its application is curbed by photo-generated carrier recombination and photo corrosion. Although constructing S-scheme heterojunctions by combining ZnIn_(2)S_(4)with other semiconductors can solve these problems, the photocatalytic activity of S-scheme heterojunctions can be further improved. Therefore, this short review summarizes modification strategies of ZnIn_(2)S_(4)-based S-scheme heterojunctions. This article also introduces the concept, design principles, and characterization methods of ZnIn_(2)S_(4)-based S-scheme heterojunction. Finally, current challenges and future research focuses related to ZnIn_(2)S_(4)-based S-scheme heterojunctions are discussed and summarized, including the utilization of advanced in-situ characterization techniques to further illuminate the photocatalytic mechanism, the DFT-assisted design of catalysts to increase the selectivity of products during photocatalytic CO_(2) reduction, and extending the photoresponse of ZnIn_(2)S_(4)-based S-scheme heterojunction to near-infrared range, etc.展开更多
Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategie...Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategies,in this study,M Fe_(2)O_(4)and flower-like core@shell M Fe_(2)O_(4)@MoS_(2)(M=Mn,Ni,and Zn)sam-ples with different categories were elaborately designed and selectively produced in large scale through a simple two-step hydrothermal reaction.We conducted the systematical investigation on their microstruc-tures,electromagnetic parameters and microwave absorption performances(MAPs).The obtained results revealed that the large radius of M^(2+)cation could effectively boost the concentration of oxygen vacancy in the M Fe_(2)O_(4)and M Fe_(2)O_(4)@MoS_(2)samples,which resulted in the improvement of dielectric loss capabil-ities and MAPs.Furthermore,the introduction of MoS_(2)nanosheets greatly improved the interfacial effect and enhanced the polarization loss capabilities,which also boosted the MAPs.By taking full advantage of the defect and interface,the designed M Fe_(2)O_(4)@MoS_(2)samples displayed tunable and excellent com-prehensive MAPs including strong absorption capability,wide absorption bandwidth and thin matching thicknesses.Therefore,the clear understanding of defect and interface engineering made these strategies well elaborately designed and applicable to improving MAPs.展开更多
In this paper, we report an improved method for preparing 2--alkoxy 5 fluoro--3H --4--pyrimidone from 2--chloro--5--fluoro--3H--4--pyrimidone and sodium alkoxide under normal pressure at reflux temperature. Some new c...In this paper, we report an improved method for preparing 2--alkoxy 5 fluoro--3H --4--pyrimidone from 2--chloro--5--fluoro--3H--4--pyrimidone and sodium alkoxide under normal pressure at reflux temperature. Some new compounds were synthesized in higher yield by this method.展开更多
Sub-Saharan African countries depend 80% on the biomass-wood to meet their daily needs in terms of cooking foods. Traditional cookstoves are much more used to this effect. Many change programmes for replacing cookstov...Sub-Saharan African countries depend 80% on the biomass-wood to meet their daily needs in terms of cooking foods. Traditional cookstoves are much more used to this effect. Many change programmes for replacing cookstove model have been planned. Yet many of these programmes have not been preceded by environmental impact studies. This work offers high-performance cookstove models and determines their impact on the reduction of CO2 emissions, a very harmful greenhouse gas causing the planet warming and climate change. Replacing the traditional cookstove by an improved stove may lead to an economy in terms of fuel ranging from 33.2% to 75.4% according to the model of cookstoves. Yet the Gasifier using pellets as fuel remains the most beneficial stove in terms of fuel saving (75.4%) and in terms of ER CO2, i.e. 2748 t CO2/Year. An improved gasifier cookstove is multi-fuel. He can use charcoal, pellets and wood. This is an indispensable cooking tool with alternative fuels. In this work, the ER CO2 was evaluated using two methods. The KPT, which is a field method and the CCT which is a laboratory method. By the KPT method a gasifier ICS/GAS/P records up to an ERCO2 of 2748 t CO2/Year, while with the same gasifier, an ERCO2 of 2619 t CO2/year is found by the CCT method. The comparison between the two methods shows the same trend but with very high values of ERCO2 for the KPT method results. The variation between the two methods ranges between 1% approximately to 6.9 percent.展开更多
By means of an improved ligand-field theory, the "pure electronic" PS and the PS due to EPI of R line of MgO: V^2+ have been calculated, respectively. The calculated results are in very good agreement with the exp...By means of an improved ligand-field theory, the "pure electronic" PS and the PS due to EPI of R line of MgO: V^2+ have been calculated, respectively. The calculated results are in very good agreement with the experimental data. The behaviors of the pure electronic PS of R line of MgO:V^2+ and the PS of its R line due to EPI are different. It is the combined effect of them that gives rise to the total PS of R line, which has satisfactorily explained the experimental results. The mixing-degree of |t2^2(^3T1)e^4T2〉 and |t2^3 ^2E〉 in the wavefunetion of R level and its variation with pressure have been calculated and analyzed. The comparison between the feature of R-line PS of MgO:V^2+ and that of MgO:Cr^3+ has been made.展开更多
基金supported by National Key Research and Development Program of China (2023YFB3307800)National Natural Science Foundation of China (Key Program: 62136003, 62373155)+1 种基金Major Science and Technology Project of Xinjiang (No. 2022A01006-4)the Fundamental Research Funds for the Central Universities。
文摘Hydrocracking is one of the most important petroleum refining processes that converts heavy oils into gases,naphtha,diesel,and other products through cracking reactions.Multi-objective optimization algorithms can help refining enterprises determine the optimal operating parameters to maximize product quality while ensuring product yield,or to increase product yield while reducing energy consumption.This paper presents a multi-objective optimization scheme for hydrocracking based on an improved SPEA2-PE algorithm,which combines path evolution operator and adaptive step strategy to accelerate the convergence speed and improve the computational accuracy of the algorithm.The reactor model used in this article is simulated based on a twenty-five lumped kinetic model.Through model and test function verification,the proposed optimization scheme exhibits significant advantages in the multiobjective optimization process of hydrocracking.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Nos. XDA23010300 and XDA23010000)the National Natural Science Foundation of China (Nos. 51878644 and 41573138)。
文摘ZnIn_(2)S_(4), a typical n-type semiconductor, has received intensive attention due to its suitable bandgap, excellent visible light absorption performance, and simple and fiexible preparation methods. However, its application is curbed by photo-generated carrier recombination and photo corrosion. Although constructing S-scheme heterojunctions by combining ZnIn_(2)S_(4)with other semiconductors can solve these problems, the photocatalytic activity of S-scheme heterojunctions can be further improved. Therefore, this short review summarizes modification strategies of ZnIn_(2)S_(4)-based S-scheme heterojunctions. This article also introduces the concept, design principles, and characterization methods of ZnIn_(2)S_(4)-based S-scheme heterojunction. Finally, current challenges and future research focuses related to ZnIn_(2)S_(4)-based S-scheme heterojunctions are discussed and summarized, including the utilization of advanced in-situ characterization techniques to further illuminate the photocatalytic mechanism, the DFT-assisted design of catalysts to increase the selectivity of products during photocatalytic CO_(2) reduction, and extending the photoresponse of ZnIn_(2)S_(4)-based S-scheme heterojunction to near-infrared range, etc.
基金This work was supported by the Fund of Fok Ying Tung Edu-cation Foundation,the Major Research Project of Innovative Group of Guizhou province(No.2018-013)Open Fund from Henan Uni-versity of Science and Technology,the National Science Foundation of China(Nos.11964006 and 11774156)the Foundation of the National Key Project for Basic Research(No.2012CB932304)for fi-nancial support。
文摘Previous results revealed that the defect and/or interface had a great impact on the electromagnetic pa-rameters of materials.In order to understand the main physical mechanisms and effectively utilize these strategies,in this study,M Fe_(2)O_(4)and flower-like core@shell M Fe_(2)O_(4)@MoS_(2)(M=Mn,Ni,and Zn)sam-ples with different categories were elaborately designed and selectively produced in large scale through a simple two-step hydrothermal reaction.We conducted the systematical investigation on their microstruc-tures,electromagnetic parameters and microwave absorption performances(MAPs).The obtained results revealed that the large radius of M^(2+)cation could effectively boost the concentration of oxygen vacancy in the M Fe_(2)O_(4)and M Fe_(2)O_(4)@MoS_(2)samples,which resulted in the improvement of dielectric loss capabil-ities and MAPs.Furthermore,the introduction of MoS_(2)nanosheets greatly improved the interfacial effect and enhanced the polarization loss capabilities,which also boosted the MAPs.By taking full advantage of the defect and interface,the designed M Fe_(2)O_(4)@MoS_(2)samples displayed tunable and excellent com-prehensive MAPs including strong absorption capability,wide absorption bandwidth and thin matching thicknesses.Therefore,the clear understanding of defect and interface engineering made these strategies well elaborately designed and applicable to improving MAPs.
基金The project is supported by Natural Science Foundation of Shandong.
文摘In this paper, we report an improved method for preparing 2--alkoxy 5 fluoro--3H --4--pyrimidone from 2--chloro--5--fluoro--3H--4--pyrimidone and sodium alkoxide under normal pressure at reflux temperature. Some new compounds were synthesized in higher yield by this method.
文摘Sub-Saharan African countries depend 80% on the biomass-wood to meet their daily needs in terms of cooking foods. Traditional cookstoves are much more used to this effect. Many change programmes for replacing cookstove model have been planned. Yet many of these programmes have not been preceded by environmental impact studies. This work offers high-performance cookstove models and determines their impact on the reduction of CO2 emissions, a very harmful greenhouse gas causing the planet warming and climate change. Replacing the traditional cookstove by an improved stove may lead to an economy in terms of fuel ranging from 33.2% to 75.4% according to the model of cookstoves. Yet the Gasifier using pellets as fuel remains the most beneficial stove in terms of fuel saving (75.4%) and in terms of ER CO2, i.e. 2748 t CO2/Year. An improved gasifier cookstove is multi-fuel. He can use charcoal, pellets and wood. This is an indispensable cooking tool with alternative fuels. In this work, the ER CO2 was evaluated using two methods. The KPT, which is a field method and the CCT which is a laboratory method. By the KPT method a gasifier ICS/GAS/P records up to an ERCO2 of 2748 t CO2/Year, while with the same gasifier, an ERCO2 of 2619 t CO2/year is found by the CCT method. The comparison between the two methods shows the same trend but with very high values of ERCO2 for the KPT method results. The variation between the two methods ranges between 1% approximately to 6.9 percent.
文摘By means of an improved ligand-field theory, the "pure electronic" PS and the PS due to EPI of R line of MgO: V^2+ have been calculated, respectively. The calculated results are in very good agreement with the experimental data. The behaviors of the pure electronic PS of R line of MgO:V^2+ and the PS of its R line due to EPI are different. It is the combined effect of them that gives rise to the total PS of R line, which has satisfactorily explained the experimental results. The mixing-degree of |t2^2(^3T1)e^4T2〉 and |t2^3 ^2E〉 in the wavefunetion of R level and its variation with pressure have been calculated and analyzed. The comparison between the feature of R-line PS of MgO:V^2+ and that of MgO:Cr^3+ has been made.