Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vi...Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.展开更多
Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of a...Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.展开更多
Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in th...Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.展开更多
Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction ...Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction harvests light energy to synthesize ATP and NADPH through an electron transport chain,and as well as giving out O_(2);dark reaction fixes CO_(2) into six carbon sugars by utilizing NADPH and energy from ATP.Subsequently,plants convert optical energy into chemical energy for maintaining growth and development through absorbing light energy.Here,firstly,we highlighted the biological importance of photosynthesis,and hormones and metabolites,photosynthetic and regulating enzymes,and signaling components that collectively regulate photosynthesis in tomato.Next,we reviewed the advances in tomato photosynthesis,including two aspects of genetic basis and genetic improvement.Numerous genes regulating tomato photosynthesis are gradually uncovered,and the interaction network among those genes remains to be constructed.Finally,the photosynthesis occurring in fruit of tomato and the relationship between photosynthesis in leaf and fruit were discussed.Leaves and fruits are photosynthate sources and sinks of tomato respectively,and interaction between photosynthesis in leaf and fruit exists.Additionally,future perspectives that needs to be addressed on tomato photosynthesis were proposed.展开更多
To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,t...To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.展开更多
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curi...This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications.展开更多
When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game ...When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.展开更多
Biochar application to soil is commonly recognized to improve soil fertility and consequently biomass and food production sustainably.We re-examined the robustness of the underlying data and found that,of the 12000+ p...Biochar application to soil is commonly recognized to improve soil fertility and consequently biomass and food production sustainably.We re-examined the robustness of the underlying data and found that,of the 12000+ publications on“biochar and agriculture”used in meta-studies,only 109 Institute for Scientific Information(ISI)papers(or 0.9%)provide experimental data on the impacts on crop yield and/or biomass production.展开更多
In response to the deficiencies of commonly used optimization methods for assembly lines,a production demand-oriented optimization method for assembly lines is proposed.Taking a certain compressor assembly line as an ...In response to the deficiencies of commonly used optimization methods for assembly lines,a production demand-oriented optimization method for assembly lines is proposed.Taking a certain compressor assembly line as an example,the production rhythm and the number of workstations are calculated based on production requirements and working systems.With assembly rhythm and smoothing index as optimization goals,an improved particle swarm optimization algorithm is employed for process allocation.Subsequently,Flexsim simulation is used to analyze the assembly line.The final results show that after optimization using the improved particle swarm algorithm,the assembly line balance rate increased from 71.1%to 85.9%,and the assembly line smoothing index decreased from 47.4 to 29.8,significantly enhancing assembly efficiency.This demonstrates the effectiveness of the proposed optimization method for the assembly line and provides a reference for other products in the same industry.展开更多
BACKGROUND Cognitive impairment is a major cause of disability in patients who have suffered from a stroke,and cognitive rehabilitation interventions show promise for improving memory.AIM To examine the effectiveness ...BACKGROUND Cognitive impairment is a major cause of disability in patients who have suffered from a stroke,and cognitive rehabilitation interventions show promise for improving memory.AIM To examine the effectiveness of virtual reality(VR)and non-VR(NVR)cognitive rehabilitation techniques for improving memory in patients after stroke.METHODS An extensive and thorough search was executed across five pertinent electronic databases:Cumulative Index to Nursing and Allied Health Literature;MEDLINE(PubMed);Scopus;ProQuest Central;and Google Scholar.This systematic review was conducted following the preferred reporting items for systematic reviews and meta-analyses guideline.Studies that recruited participants who experienced a stroke,utilized cognitive rehabilitation interventions,and published in the last 10 years were included in the review.RESULTS Thirty studies met the inclusion criteria.VR interventions significantly improved memory and cognitive function(mean difference:4.2±1.3,P<0.05),whereas NVR(including cognitive training,music,and exercise)moderately improved memory.Compared with traditional methods,technology-driven VR approaches were particularly beneficial for enhancing daily cognitive tasks.CONCLUSION VR and NVR reality interventions are beneficial for post-stroke cognitive recovery,with VR providing enhanced immersive experiences.Both approaches hold transformative potential for post-stroke rehabilitation.展开更多
Chlorophyll a(Chl a)is a key photosynthetic pigment and an essential indicator of phytoplankton biomass.Accurate Chl a measurements are crucial for understanding marine biogeochemical processes.China launched the Chin...Chlorophyll a(Chl a)is a key photosynthetic pigment and an essential indicator of phytoplankton biomass.Accurate Chl a measurements are crucial for understanding marine biogeochemical processes.China launched the Chinese Ocean Color and Temperature Scanner(COCTS)aboard the HY-1D satellite in 2020,yet its Chl a products require further validation in complex coastal waters.This study assesses HY-1D Chl a products in the Bohai and Yellow Seas,two optically complex coastal regions,using in situ data collected during multiple cruises.Additionally,we compare HY-1D Chl a products with those from the Moderate Resolution Imaging Spectroradiometer(MODIS)and the Visible Infrared Imaging Radiometer Suite(VIIRS).We observed that although Chl a products from HY-1D are generally consistent with those from the MODIS and VIIRS in spatial distribution,there are still significant errors when compared with in situ data.Therefore,we developed a new blended algorithm to improve the accuracy of HY-1D Chl a products.The algorithm distinguishes between turbid and relatively clean waters using a classification index based on the ratio of remote sensing reflectance(R_(rs)(λ)).After the initial classification,we developed targeted algorithms based on the optical properties of different water bodies.The new model shows a significant improvement,reducing the mean absolute percentage error(MAPE)from 43.1%to 24.3%.Additionally,merging Chl a data from HY-1D,MODIS,and VIIRS maintains good accuracy,with HY-1D Chl a products significantly enhancing data coverage and robustness.This research provides important support for producing high-quality HY-1D Chl a products for coastal waters.展开更多
BACKGROUND There is no available data about the trajectory of heart failure(HF)with improved ejection fraction(EF)and patient clinical outcomes in Qatar.AIM To explore the difference in characteristics and outcomes be...BACKGROUND There is no available data about the trajectory of heart failure(HF)with improved ejection fraction(EF)and patient clinical outcomes in Qatar.AIM To explore the difference in characteristics and outcomes between patients with transient and sustained improvement in left ventricular ejection fraction(LVEF)and to determine the independent predictors for sustained improvement in LVEF.METHODS This is a retrospective cohort study that was conducted at the advanced HF clinic of a tertiary care hospital in Qatar between January 2017 and December 2018.This were divided into two groups:HF with transient improvement in EF(HFtimpEF)and HF with sustained improvement in EF(HFsimpEF).RESULTS A total of 175 patients with HF and improved EF were included.Among them 136(77.7%)patients showed sustained improvement in LVEF.The remaining patients with HFtimpEF were predominantly males[37(94.9%)vs 101(74.3%),P=0.005]with a higher incidence of ischemic cardiomyopathy[32(82.1%)vs 68(50.4%),P=0.002],dyslipidemia[24(61.5%)vs 54(39.7%),P=0.03],and hypertension[34(87.2%)vs 93(68.4%),P=0.03]than those with HFsimpEF.The latter experienced significantly lower rates of hospitalization[39(28.7%)vs 20(51.3%),P=0.01]and diagnosis of new cardiovascular conditions during the follow-up(e.g.,acute coronary syndrome,stroke,decompensated HF,and atrial fibrillation)[14(10.3%)vs 10(25.6%),P=0.03]without a difference in emergency department visits or in-hospital death.Sustained improvement in LVEF was positively associated with being female[adjusted odds ratio(aOR)=6.8,95%confidence interval(CI):1.4-32.3,P=0.02],having non-ischemic etiology of HF(aOR=3.1,95%CI:1.03-9.3,P=0.04),and using a mineralocorticoid receptor antagonist(aOR=7.0,95%CI:1.50-31.8,P=0.01).CONCLUSION Patients with HFsimpEF experienced significantly lower rates of hospitalization and diagnosis of new cardiova-scular conditions than patients with HFtimpEF.Sustained improvement in LVEF was positively associated with being a female,having non-ischemic etiology of HF,and using a mineralocorticoid receptor antagonist.展开更多
This study focused on the various surface treatments of grinding,Na OH etching,HCl pickling,micro-arc oxidation and anodic oxidation to strengthen adhesive bonding joint of Aluminum(Al)substrate and Carbon Fiber Reinf...This study focused on the various surface treatments of grinding,Na OH etching,HCl pickling,micro-arc oxidation and anodic oxidation to strengthen adhesive bonding joint of Aluminum(Al)substrate and Carbon Fiber Reinforced Plastics(CFRP).Different surface conditions were created by these treatments and simple Resin Pre-Coating(RPC)technique was further used to reduce the potential void defects at the root of those micro-cavities.Carbon Nanotubes(CNTs)were guided into the etched micro-cavities to construct quasi-Z-directional fiber bridging and form the“CNT-reinforced epoxy-pins”.The surface performance testing results imply that anodic oxidation of Al substrate created relatively even and continuous channels with higher hardness and better wettability among these treatments,which could provide quasi-vertical spaces for containing epoxy adhesive or CNTs.The single lap shear test results show combined treatments of anodic oxidation and upgraded RPC with CNTs technique on Al substrate yielded the highest bonding strength of 21.8 MPa(up to 243.3% greater than base strength).The constructed through-the-thickness“epoxy-pins”or“CNT-reinforced epoxy-pins”contributed to failure modes changing from complete debonding failure of Al substrate to peeled-off shallow fiber or delamination failure of CFRP panel.The combined treatments could be utilized to manufacture high-performance Al-CFRP composites for aviation industry application.展开更多
This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected fr...This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.展开更多
University student Party branches serve as the Party’s grassroots organizations within universities and act as a bridge and link between the Party and students.Therefore,it is essential to strengthen the development ...University student Party branches serve as the Party’s grassroots organizations within universities and act as a bridge and link between the Party and students.Therefore,it is essential to strengthen the development of student Party branches and enhance the effectiveness of student Party member education and training.This paper summarizes and analyzes the issues in the construction of student Party branches in universities and explores strategies for improving their quality,aiming to provide a reference for relevant personnel.展开更多
Songji Ancient Town in Yongchuan District,Chongqing,is a famous historical and cultural town in China and a national AAAA-level tourist attraction.In recent years,combining its unique historical and cultural heritage,...Songji Ancient Town in Yongchuan District,Chongqing,is a famous historical and cultural town in China and a national AAAA-level tourist attraction.In recent years,combining its unique historical and cultural heritage,the scenic area has developed research travel products themed on intangible cultural heritage and red tourism,attracting students from across the country to experience it.On the other hand,in the context of the deepening of the“double reduction”policy and the concept of a“high-quality education system,”the educational connotation of Songji Ancient Town’s research products is constantly enriching.Based on this,this article will combine the RMP theory to explore strategies for improving satisfaction with Yongchuan District’s“Songji Ancient Town Research Products”under a high-quality education system,to promote the development of the scenic area’s research experience projects and overall tourism service levels.展开更多
The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation ...The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes.展开更多
[Objectives]Farmland ginseng cultivation,as a sustainable alternative to traditional forest-clearing ginseng planting,requires systematic evaluation of soil optimization strategies.This study aimed to quantify the lin...[Objectives]Farmland ginseng cultivation,as a sustainable alternative to traditional forest-clearing ginseng planting,requires systematic evaluation of soil optimization strategies.This study aimed to quantify the linkage between soil improvement outcomes and ginseng(Panax ginseng)yield across five regions in Yanbian Korean Autonomous Prefecture.[Methods]Soil improvement trials were conducted using farmland soils,with forest soils as the baseline.Soil nutrient contents were measured via soil agrochemical analysis method using a continuous flow analyzer.Statistical approaches,including significance tests,correlation analysis,and regression analysis,were applied to identify key factors influencing yield.[Results]Ginseng yield exhibited a significant positive correlation with organic matter content and available phosphorus,but a negative correlation with electrical conductivity,ammonium nitrogen,and available potassium.Wangqing and Liucai regions achieved post-improvement yields equivalent to 94%and 88%of forest soil yields,respectively,demonstrating the highest soil similarity to forest ecosystems.[Conclusions]Region-specific soil improvement protocols in Wangqing and Liucai show high replicability and efficacy.These strategies can serve as benchmarks for sustainable farmland ginseng cultivation,minimizing ecological disruption while maintaining productivity.展开更多
基金funded by the National Natural Science Foundation of China(No.41962016)the Natural Science Foundation of NingXia(Nos.2023AAC02023,2023A1218,and 2021AAC02006).
文摘Soil improvement is one of the most important issues in geotechnical engineering practice.The wide application of traditional improvement techniques(cement/chemical materials)are limited due to damage ecological en-vironment and intensify carbon emissions.However,the use of microbially induced calcium carbonate pre-cipitation(MICP)to obtain bio-cement is a novel technique with the potential to induce soil stability,providing a low-carbon,environment-friendly,and sustainable integrated solution for some geotechnical engineering pro-blems in the environment.This paper presents a comprehensive review of the latest progress in soil improvement based on the MICP strategy.It systematically summarizes and overviews the mineralization mechanism,influ-encing factors,improved methods,engineering characteristics,and current field application status of the MICP.Additionally,it also explores the limitations and correspondingly proposes prospective applications via the MICP approach for soil improvement.This review indicates that the utilization of different environmental calcium-based wastes in MICP and combination of materials and MICP are conducive to meeting engineering and market demand.Furthermore,we recommend and encourage global collaborative study and practice with a view to commercializing MICP technique in the future.The current review purports to provide insights for engineers and interdisciplinary researchers,and guidance for future engineering applications.
基金supported in part by the National Natural Science Foundation of China(61873106,62303109)Start-Up Research Fund of Southeast University(RF1028623002)Shenzhen Science and Technology Program(JCYJ20230807114609019)
文摘Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1.
基金supported by the National Natural Science Foundation of China [grant numbers 42088101 and 42375048]。
文摘Due to the lack of accurate data and complex parameterization,the prediction of groundwater depth is a chal-lenge for numerical models.Machine learning can effectively solve this issue and has been proven useful in the prediction of groundwater depth in many areas.In this study,two new models are applied to the prediction of groundwater depth in the Ningxia area,China.The two models combine the improved dung beetle optimizer(DBO)algorithm with two deep learning models:The Multi-head Attention-Convolution Neural Network-Long Short Term Memory networks(MH-CNN-LSTM)and the Multi-head Attention-Convolution Neural Network-Gated Recurrent Unit(MH-CNN-GRU).The models with DBO show better prediction performance,with larger R(correlation coefficient),RPD(residual prediction deviation),and lower RMSE(root-mean-square error).Com-pared with the models with the original DBO,the R and RPD of models with the improved DBO increase by over 1.5%,and the RMSE decreases by over 1.8%,indicating better prediction results.In addition,compared with the multiple linear regression model,a traditional statistical model,deep learning models have better prediction performance.
基金supported by grants from the National Key Research&Development Plan(Grants Nos.2022YFF10030022022YFD1200502)+7 种基金National Natural Science Foundation of China(Grant Nos.3237269631991182)Wuhan Biological Breeding Major Project(Grant No.2022021302024852)Key Project of Hubei Hongshan Laboratory(2021hszd007)HZAU-AGIS Cooperation Fund(Grant No.SZYJY2023022)Funds for High Quality Development of Hubei Seed Industry(HBZY2023B004)Hubei Agriculture Research System(2023HBSTX4-06)Hubei Key Research&Development Plan(Grants Nos.2022BBA0066,2022BBA0062)。
文摘Photosynthesis is one the most important chemical reaction in plants,and it is the ultimate energy source of any living organisms.The light and dark reactions are two essential phases of photosynthesis.Light reaction harvests light energy to synthesize ATP and NADPH through an electron transport chain,and as well as giving out O_(2);dark reaction fixes CO_(2) into six carbon sugars by utilizing NADPH and energy from ATP.Subsequently,plants convert optical energy into chemical energy for maintaining growth and development through absorbing light energy.Here,firstly,we highlighted the biological importance of photosynthesis,and hormones and metabolites,photosynthetic and regulating enzymes,and signaling components that collectively regulate photosynthesis in tomato.Next,we reviewed the advances in tomato photosynthesis,including two aspects of genetic basis and genetic improvement.Numerous genes regulating tomato photosynthesis are gradually uncovered,and the interaction network among those genes remains to be constructed.Finally,the photosynthesis occurring in fruit of tomato and the relationship between photosynthesis in leaf and fruit were discussed.Leaves and fruits are photosynthate sources and sinks of tomato respectively,and interaction between photosynthesis in leaf and fruit exists.Additionally,future perspectives that needs to be addressed on tomato photosynthesis were proposed.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX24_4084).
文摘To solve the problem of low detection accuracy for complex weld defects,the paper proposes a weld defects detection method based on improved YOLOv5s.To enhance the ability to focus on key information in feature maps,the scSE attention mechanism is intro-duced into the backbone network of YOLOv5s.A Fusion-Block module and additional layers are added to the neck network of YOLOv5s to improve the effect of feature fusion,which is to meet the needs of complex object detection.To reduce the computation-al complexity of the model,the C3Ghost module is used to replace the CSP2_1 module in the neck network of YOLOv5s.The scSE-ASFF module is constructed and inserted between the neck network and the prediction end,which is to realize the fusion of features between the different layers.To address the issue of imbalanced sample quality in the dataset and improve the regression speed and accuracy of the loss function,the CIoU loss function in the YOLOv5s model is replaced with the Focal-EIoU loss function.Finally,ex-periments are conducted based on the collected weld defect dataset to verify the feasibility of the improved YOLOv5s for weld defects detection.The experimental results show that the precision and mAP of the improved YOLOv5s in detecting complex weld defects are as high as 83.4%and 76.1%,respectively,which are 2.5%and 7.6%higher than the traditional YOLOv5s model.The proposed weld defects detection method based on the improved YOLOv5s in this paper can effectively solve the problem of low weld defects detection accuracy.
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.
基金Sponsored by Jilin Provincial Department of Education Scientific Research Project(Grant Nos.JJKH20190875KJ,JJKH20230348KJ).
文摘This study tested the electrical conductivity and pressure sensitivity of lime⁃improved silty sand reinforced with Carbon Fiber Powder(CFP)as the conductive medium.The influence of CFP dosage,moisture content and curing duration on the unconfined compressive strength,initial resistivity and pressure sensitivity of the improved soil was systematically analysed.The results showed that the unconfined compressive strength varied non⁃monotonically with increasing CFP dosage,reaching a peak at a dosage of 1.6%.Furthermore,the initial resistivity showed slight variations under different moisture conditions but eventually converged towards the conductive percolation threshold at a dosage of 2.4%.It is worth noting that CFP reinforced lime⁃improved silty sand(CRLS)exhibit a clear dynamic synchronization of strain with stress and resistivity rate of variation.The pressure sensitivity was optimized with CFP dosages ranging from 1.6%to 2.0%.Both insufficient and excessive dosages had a negative impact on pressure sensitivity.It is important to consider the weakening effect of high moisture content on the pressure sensitivity of the specimens in practical applications.
基金National Natural Science Foundation of China(NSFC61773142,NSFC62303136)。
文摘When the maneuverability of a pursuer is not significantly higher than that of an evader,it will be difficult to intercept the evader with only one pursuer.Therefore,this article adopts a two-to-one differential game strategy,the game of kind is generally considered to be angle-optimized,which allows unlimited turns,but these practices do not take into account the effect of acceleration,which does not correspond to the actual situation,thus,based on the angle-optimized,the acceleration optimization and the acceleration upper bound constraint are added into the game for consideration.A two-to-one differential game problem is proposed in the three-dimensional space,and an improved multi-objective grey wolf optimization(IMOGWO)algorithm is proposed to solve the optimal game point of this problem.With the equations that describe the relative motions between the pursuers and the evader in the three-dimensional space,a multi-objective function with constraints is given as the performance index to design an optimal strategy for the differential game.Then the optimal game point is solved by using the IMOGWO algorithm.It is proved based on Markov chains that with the IMOGWO,the Pareto solution set is the solution of the differential game.Finally,it is verified through simulations that the pursuers can capture the escapee,and via comparative experiments,it is shown that the IMOGWO algorithm performs well in terms of running time and memory usage.
文摘Biochar application to soil is commonly recognized to improve soil fertility and consequently biomass and food production sustainably.We re-examined the robustness of the underlying data and found that,of the 12000+ publications on“biochar and agriculture”used in meta-studies,only 109 Institute for Scientific Information(ISI)papers(or 0.9%)provide experimental data on the impacts on crop yield and/or biomass production.
文摘In response to the deficiencies of commonly used optimization methods for assembly lines,a production demand-oriented optimization method for assembly lines is proposed.Taking a certain compressor assembly line as an example,the production rhythm and the number of workstations are calculated based on production requirements and working systems.With assembly rhythm and smoothing index as optimization goals,an improved particle swarm optimization algorithm is employed for process allocation.Subsequently,Flexsim simulation is used to analyze the assembly line.The final results show that after optimization using the improved particle swarm algorithm,the assembly line balance rate increased from 71.1%to 85.9%,and the assembly line smoothing index decreased from 47.4 to 29.8,significantly enhancing assembly efficiency.This demonstrates the effectiveness of the proposed optimization method for the assembly line and provides a reference for other products in the same industry.
文摘BACKGROUND Cognitive impairment is a major cause of disability in patients who have suffered from a stroke,and cognitive rehabilitation interventions show promise for improving memory.AIM To examine the effectiveness of virtual reality(VR)and non-VR(NVR)cognitive rehabilitation techniques for improving memory in patients after stroke.METHODS An extensive and thorough search was executed across five pertinent electronic databases:Cumulative Index to Nursing and Allied Health Literature;MEDLINE(PubMed);Scopus;ProQuest Central;and Google Scholar.This systematic review was conducted following the preferred reporting items for systematic reviews and meta-analyses guideline.Studies that recruited participants who experienced a stroke,utilized cognitive rehabilitation interventions,and published in the last 10 years were included in the review.RESULTS Thirty studies met the inclusion criteria.VR interventions significantly improved memory and cognitive function(mean difference:4.2±1.3,P<0.05),whereas NVR(including cognitive training,music,and exercise)moderately improved memory.Compared with traditional methods,technology-driven VR approaches were particularly beneficial for enhancing daily cognitive tasks.CONCLUSION VR and NVR reality interventions are beneficial for post-stroke cognitive recovery,with VR providing enhanced immersive experiences.Both approaches hold transformative potential for post-stroke rehabilitation.
基金The National Key Research and Development Program of China under contract No.2021YFB3901304the National Natural Science Foundation of China under contract No.42842176181,42476173,and 42176179the Natural Science Foundation of Jiangsu Province under contract No.BK20211289.
文摘Chlorophyll a(Chl a)is a key photosynthetic pigment and an essential indicator of phytoplankton biomass.Accurate Chl a measurements are crucial for understanding marine biogeochemical processes.China launched the Chinese Ocean Color and Temperature Scanner(COCTS)aboard the HY-1D satellite in 2020,yet its Chl a products require further validation in complex coastal waters.This study assesses HY-1D Chl a products in the Bohai and Yellow Seas,two optically complex coastal regions,using in situ data collected during multiple cruises.Additionally,we compare HY-1D Chl a products with those from the Moderate Resolution Imaging Spectroradiometer(MODIS)and the Visible Infrared Imaging Radiometer Suite(VIIRS).We observed that although Chl a products from HY-1D are generally consistent with those from the MODIS and VIIRS in spatial distribution,there are still significant errors when compared with in situ data.Therefore,we developed a new blended algorithm to improve the accuracy of HY-1D Chl a products.The algorithm distinguishes between turbid and relatively clean waters using a classification index based on the ratio of remote sensing reflectance(R_(rs)(λ)).After the initial classification,we developed targeted algorithms based on the optical properties of different water bodies.The new model shows a significant improvement,reducing the mean absolute percentage error(MAPE)from 43.1%to 24.3%.Additionally,merging Chl a data from HY-1D,MODIS,and VIIRS maintains good accuracy,with HY-1D Chl a products significantly enhancing data coverage and robustness.This research provides important support for producing high-quality HY-1D Chl a products for coastal waters.
文摘BACKGROUND There is no available data about the trajectory of heart failure(HF)with improved ejection fraction(EF)and patient clinical outcomes in Qatar.AIM To explore the difference in characteristics and outcomes between patients with transient and sustained improvement in left ventricular ejection fraction(LVEF)and to determine the independent predictors for sustained improvement in LVEF.METHODS This is a retrospective cohort study that was conducted at the advanced HF clinic of a tertiary care hospital in Qatar between January 2017 and December 2018.This were divided into two groups:HF with transient improvement in EF(HFtimpEF)and HF with sustained improvement in EF(HFsimpEF).RESULTS A total of 175 patients with HF and improved EF were included.Among them 136(77.7%)patients showed sustained improvement in LVEF.The remaining patients with HFtimpEF were predominantly males[37(94.9%)vs 101(74.3%),P=0.005]with a higher incidence of ischemic cardiomyopathy[32(82.1%)vs 68(50.4%),P=0.002],dyslipidemia[24(61.5%)vs 54(39.7%),P=0.03],and hypertension[34(87.2%)vs 93(68.4%),P=0.03]than those with HFsimpEF.The latter experienced significantly lower rates of hospitalization[39(28.7%)vs 20(51.3%),P=0.01]and diagnosis of new cardiovascular conditions during the follow-up(e.g.,acute coronary syndrome,stroke,decompensated HF,and atrial fibrillation)[14(10.3%)vs 10(25.6%),P=0.03]without a difference in emergency department visits or in-hospital death.Sustained improvement in LVEF was positively associated with being female[adjusted odds ratio(aOR)=6.8,95%confidence interval(CI):1.4-32.3,P=0.02],having non-ischemic etiology of HF(aOR=3.1,95%CI:1.03-9.3,P=0.04),and using a mineralocorticoid receptor antagonist(aOR=7.0,95%CI:1.50-31.8,P=0.01).CONCLUSION Patients with HFsimpEF experienced significantly lower rates of hospitalization and diagnosis of new cardiova-scular conditions than patients with HFtimpEF.Sustained improvement in LVEF was positively associated with being a female,having non-ischemic etiology of HF,and using a mineralocorticoid receptor antagonist.
基金supported financially by the National Natural Science Foundations of China(No.52102115)the Natural Science Foundation of Sichuan Province,China(No.2025HJRC0019)+1 种基金the Basalt Fiber and Composite Key Laboratory of Sichuan Province,China(No.XXKFJJ202308)Shock and Vibration of Engineering Materials and Structures Key Lab of Sichuan Province,China(No.23kfgk06)。
文摘This study focused on the various surface treatments of grinding,Na OH etching,HCl pickling,micro-arc oxidation and anodic oxidation to strengthen adhesive bonding joint of Aluminum(Al)substrate and Carbon Fiber Reinforced Plastics(CFRP).Different surface conditions were created by these treatments and simple Resin Pre-Coating(RPC)technique was further used to reduce the potential void defects at the root of those micro-cavities.Carbon Nanotubes(CNTs)were guided into the etched micro-cavities to construct quasi-Z-directional fiber bridging and form the“CNT-reinforced epoxy-pins”.The surface performance testing results imply that anodic oxidation of Al substrate created relatively even and continuous channels with higher hardness and better wettability among these treatments,which could provide quasi-vertical spaces for containing epoxy adhesive or CNTs.The single lap shear test results show combined treatments of anodic oxidation and upgraded RPC with CNTs technique on Al substrate yielded the highest bonding strength of 21.8 MPa(up to 243.3% greater than base strength).The constructed through-the-thickness“epoxy-pins”or“CNT-reinforced epoxy-pins”contributed to failure modes changing from complete debonding failure of Al substrate to peeled-off shallow fiber or delamination failure of CFRP panel.The combined treatments could be utilized to manufacture high-performance Al-CFRP composites for aviation industry application.
文摘This work’s aim is to participate in local materials (raw or fiber improved), which can be used in sustainable and accessible buildings to every Senegalese. To do this, studied materials are respectively collected from a laterite clay pit in Ndouloumadjie Dembe (Matam, Northern Senegal) and another from a termite mound in Tattaguine (Fatick, Central Senegal). These samples are first subjected to Geotechnical identification tests. Mud bricks are then made with raw or sifted millet involucre improved to 1%, 2%, and 3% at 5 mm sieve samples. These briquettes are subjected to compression tests and thermal evaluations. Lagrange and Newton methods of numeric modelling are used to test the whole mixture points between 1% and 3% millet involucre for a better correlation between mechanical and thermal parameters. The results show that in Matam, as well as in Tattaguine, these muds, raw or improved, are of good thermomechanical quality when they are used in bricks making. And the thermomechanical coupling quality reaches a maximum situated at 2.125% for Ndouloumadjie and 2.05% for Tattaguine. These briquettes’ building quality depends on the mud content used in iron, aluminum, silica and clay. Thus, same natural materials can be used in the establishment of habitats according to their geotechnical, chemical, mechanical and thermal characteristics.
文摘University student Party branches serve as the Party’s grassroots organizations within universities and act as a bridge and link between the Party and students.Therefore,it is essential to strengthen the development of student Party branches and enhance the effectiveness of student Party member education and training.This paper summarizes and analyzes the issues in the construction of student Party branches in universities and explores strategies for improving their quality,aiming to provide a reference for relevant personnel.
文摘Songji Ancient Town in Yongchuan District,Chongqing,is a famous historical and cultural town in China and a national AAAA-level tourist attraction.In recent years,combining its unique historical and cultural heritage,the scenic area has developed research travel products themed on intangible cultural heritage and red tourism,attracting students from across the country to experience it.On the other hand,in the context of the deepening of the“double reduction”policy and the concept of a“high-quality education system,”the educational connotation of Songji Ancient Town’s research products is constantly enriching.Based on this,this article will combine the RMP theory to explore strategies for improving satisfaction with Yongchuan District’s“Songji Ancient Town Research Products”under a high-quality education system,to promote the development of the scenic area’s research experience projects and overall tourism service levels.
文摘The research on optimization methods for constellation launch deployment strategies focused on the consideration of mission interval time constraints at the launch site.Firstly,a dynamic modeling of the constellation deployment process was established,and the relationship between the deployment window and the phase difference of the orbit insertion point,as well as the cost of phase adjustment after orbit insertion,was derived.Then,the combination of the constellation deployment position sequence was treated as a parameter,together with the sequence of satellite deployment intervals,as optimization variables,simplifying a highdimensional search problem within a wide range of dates to a finite-dimensional integer programming problem.An improved genetic algorithm with local search on deployment dates was introduced to optimize the launch deployment strategy.With the new description of the optimization variables,the total number of elements in the solution space was reduced by N orders of magnitude.Numerical simulation confirms that the proposed optimization method accelerates the convergence speed from hours to minutes.
基金Supported by National Natural Science Foundation Cultivation Project of Lishui University(036/2024)Municipal-Level Project:Pathways for Establishing Low-carbon Pilot Counties(FGLS202210).
文摘[Objectives]Farmland ginseng cultivation,as a sustainable alternative to traditional forest-clearing ginseng planting,requires systematic evaluation of soil optimization strategies.This study aimed to quantify the linkage between soil improvement outcomes and ginseng(Panax ginseng)yield across five regions in Yanbian Korean Autonomous Prefecture.[Methods]Soil improvement trials were conducted using farmland soils,with forest soils as the baseline.Soil nutrient contents were measured via soil agrochemical analysis method using a continuous flow analyzer.Statistical approaches,including significance tests,correlation analysis,and regression analysis,were applied to identify key factors influencing yield.[Results]Ginseng yield exhibited a significant positive correlation with organic matter content and available phosphorus,but a negative correlation with electrical conductivity,ammonium nitrogen,and available potassium.Wangqing and Liucai regions achieved post-improvement yields equivalent to 94%and 88%of forest soil yields,respectively,demonstrating the highest soil similarity to forest ecosystems.[Conclusions]Region-specific soil improvement protocols in Wangqing and Liucai show high replicability and efficacy.These strategies can serve as benchmarks for sustainable farmland ginseng cultivation,minimizing ecological disruption while maintaining productivity.