技术作为一种快速感知视频内容的方式得到了广泛的关注.现有基于图模型的视频摘要方法将视频帧作为顶点,通过边表示两个顶点之间的关系,但并不能很好地捕获视频帧之间的复杂关系.为了克服该缺点,本文提出了一种基于超图排序算法的静态...技术作为一种快速感知视频内容的方式得到了广泛的关注.现有基于图模型的视频摘要方法将视频帧作为顶点,通过边表示两个顶点之间的关系,但并不能很好地捕获视频帧之间的复杂关系.为了克服该缺点,本文提出了一种基于超图排序算法的静态视频摘要方法(Hyper-Graph Ranking based Video Summarization,HGRVS).HGRVS方法首先通过构建视频超图模型,将任意多个有内在关联的视频帧使用一条超边连接;然后提出一种基于超图排序的视频帧分类算法将视频帧按内容分类;最后通过求解提出的一种优化函数来生成静态视频摘要.在Open Video Project和YouTube两个数据集上的大量主观与客观实验验证了所提HGRVS算法的优良性能.展开更多
现有追求高压缩质量的高光谱图像压缩算法普遍存在计算复杂度高、离线式处理、嵌入式平台实现难度大等问题,目前很难得到实际应用。为解决以上问题,设计一种基于KLT和HEVC的嵌入式高光谱图像实时压缩方法。首先基于KLT去除谱间相关性,...现有追求高压缩质量的高光谱图像压缩算法普遍存在计算复杂度高、离线式处理、嵌入式平台实现难度大等问题,目前很难得到实际应用。为解决以上问题,设计一种基于KLT和HEVC的嵌入式高光谱图像实时压缩方法。首先基于KLT去除谱间相关性,然后基于HEVC去除空间相关性并完成量化编码的过程。基于NVIDIA Jetson TX1平台,设计并实现了CPU和GPU异构并行压缩处理系统。利用真实数据集对所设计算法和所实现平台进行了性能及可行性验证。实验结果表明:在相同压缩比下,与离散小波变换(DWT)+JPEG2000算法相比,该系统明显提升了重建精度,在峰值信噪比(PSNR)方面平均提高了1.36 d B;同时,相比CPU,在GPU中进行KLT计算也至多可缩短33%的运行时间。展开更多
文摘技术作为一种快速感知视频内容的方式得到了广泛的关注.现有基于图模型的视频摘要方法将视频帧作为顶点,通过边表示两个顶点之间的关系,但并不能很好地捕获视频帧之间的复杂关系.为了克服该缺点,本文提出了一种基于超图排序算法的静态视频摘要方法(Hyper-Graph Ranking based Video Summarization,HGRVS).HGRVS方法首先通过构建视频超图模型,将任意多个有内在关联的视频帧使用一条超边连接;然后提出一种基于超图排序的视频帧分类算法将视频帧按内容分类;最后通过求解提出的一种优化函数来生成静态视频摘要.在Open Video Project和YouTube两个数据集上的大量主观与客观实验验证了所提HGRVS算法的优良性能.
文摘现有追求高压缩质量的高光谱图像压缩算法普遍存在计算复杂度高、离线式处理、嵌入式平台实现难度大等问题,目前很难得到实际应用。为解决以上问题,设计一种基于KLT和HEVC的嵌入式高光谱图像实时压缩方法。首先基于KLT去除谱间相关性,然后基于HEVC去除空间相关性并完成量化编码的过程。基于NVIDIA Jetson TX1平台,设计并实现了CPU和GPU异构并行压缩处理系统。利用真实数据集对所设计算法和所实现平台进行了性能及可行性验证。实验结果表明:在相同压缩比下,与离散小波变换(DWT)+JPEG2000算法相比,该系统明显提升了重建精度,在峰值信噪比(PSNR)方面平均提高了1.36 d B;同时,相比CPU,在GPU中进行KLT计算也至多可缩短33%的运行时间。