The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Indu...The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Industry 4.0 ecosystems.This qualitative study employs a hermeneutic phenomenological approach to explore the lived experiences of Information Technology(IT)professionals as they navigate a dynamic technological landscape marked by intelligent automation,shifting professional identities,and emerging ethical concerns.Findings indicate that developers are actively adapting to AI-augmented environments by engaging in continuous upskilling,prompt engineering,interdisciplinary collaboration,and heightened ethical awareness.However,participants also voiced growing concerns about the reliability and security of AI-generated code,noting that these tools can introduce hidden vulnerabilities and reduce critical engagement due to automation bias.Many described instances of flawed logic,insecure patterns,or syntactically correct but contextually inappropriate suggestions,underscoring the need for rigorous human oversight.Additionally,the study reveals anxieties around job displacement and the gradual erosion of fundamental coding skills,particularly in environments where AI tools dominate routine development tasks.These findings highlight an urgent need for educational reforms,industry standards,and organizational policies that prioritize both technical robustness and the preservation of human expertise.As AI becomes increasingly embedded in software engineering workflows,this research offers timely insights into how developers and organizations can responsibly integrate intelligent systems to promote accountability,resilience,and innovation across the software development lifecycle.展开更多
Using the differences and complementarities between human intelligence and artificial intelligence(AI),a hybrid-augmented intelligence,that is both stronger than human intelligence and AI,is created through Human-AI C...Using the differences and complementarities between human intelligence and artificial intelligence(AI),a hybrid-augmented intelligence,that is both stronger than human intelligence and AI,is created through Human-AI Cooperation(HAC)for teaching and learning.Human-AI Cooperation is infiltrating into all links of education,and recent research has focused a lot on the impact of teaching,learning,management,and evaluation with Human-AI Cooperation.However,AI still has its limits of intelligence,and cannot cooperate as humans.Thus,it is critical to study the obstacles of Human-AI Cooperation in education,as AI plays a role as a partner,not a tool.This study discussed for the first time how teachers and AI cooperate based on Multiple Intelligences of AI proposed by Andrzej Cichocki and puts forward a new Human-AI Cooperation teaching mode:human in the loop and teaching as leadership.It is proposed that humans in the loop and teaching as leadership can solve the problem that AI cannot cope with complex and dynamic teaching tasks in open situations,as well as the limits of intelligence for AI.展开更多
Human-AI coordination aims to develop AI agents capable of effectively coordinating with human partners,making it a crucial aspect of cooperative multi-agent reinforcement learning(MARL).Achieving satisfying performan...Human-AI coordination aims to develop AI agents capable of effectively coordinating with human partners,making it a crucial aspect of cooperative multi-agent reinforcement learning(MARL).Achieving satisfying performance of AI agents poses a long-standing challenge.Recently,ah-hoc teamwork and zero-shot coordination have shown promising advancements in open-world settings,requiring agents to coordinate efficiently with a range of unseen human partners.However,these methods usually assume an overly idealistic scenario by assuming homogeneity between the agent and the partner,which deviates from real-world conditions.To facilitate the practical deployment and application of human-AI coordination in open and real-world environments,we propose the first benchmark for open and real-world human-AI coordination(ORC)called ORCBench.ORCBench includes widely used human-AI coordination environments.Notably,within the context of real-world scenarios,ORCBench considers heterogeneity between AI agents and partners,encompassing variations in capabilities and observations,which aligns more closely with real-world applications.Furthermore,we introduce a framework known as Heterogeneous training with Communication(HeteC)for ORC.HeteC builds upon a heterogeneous training framework and enhances partner population diversity by using mixed partner training and frozen historical partners.Additionally,HeteC incorporates a communication module that enables human partners to communicate with AI agents,mitigating the adverse effects of partially observable environments.Through a series of experiments,we demonstrate the effectiveness of HeteC in improving coordination performance.Our contribution serves as an initial but important step towards addressing the challenges of ORC.展开更多
This paper explores effective human-AI collaboration in academic writing using Large Language Models(LLMs).Focusing on the two critical stages of ideation and revision,the article argues that higher education institut...This paper explores effective human-AI collaboration in academic writing using Large Language Models(LLMs).Focusing on the two critical stages of ideation and revision,the article argues that higher education institutions must develop specific pedagogical strategies to guide students in leveraging the benefits of LLMs while mitigat-ing risks such as academic integrity issues,over-reliance,and bias.The core of these strategies is to emphasize the primacy of human agency,critical thinking,and ethical responsibility.The ultimate goal is to transform AI from a potential pitfall into a powerful tool that enhances scholarly skills and depth of thought,rather than being used as a simple text generator.展开更多
文摘The rapid integration of artificial intelligence(AI)into software development,driven by large language models(LLMs),is reshaping the role of programmers from traditional coders into strategic collaborators within Industry 4.0 ecosystems.This qualitative study employs a hermeneutic phenomenological approach to explore the lived experiences of Information Technology(IT)professionals as they navigate a dynamic technological landscape marked by intelligent automation,shifting professional identities,and emerging ethical concerns.Findings indicate that developers are actively adapting to AI-augmented environments by engaging in continuous upskilling,prompt engineering,interdisciplinary collaboration,and heightened ethical awareness.However,participants also voiced growing concerns about the reliability and security of AI-generated code,noting that these tools can introduce hidden vulnerabilities and reduce critical engagement due to automation bias.Many described instances of flawed logic,insecure patterns,or syntactically correct but contextually inappropriate suggestions,underscoring the need for rigorous human oversight.Additionally,the study reveals anxieties around job displacement and the gradual erosion of fundamental coding skills,particularly in environments where AI tools dominate routine development tasks.These findings highlight an urgent need for educational reforms,industry standards,and organizational policies that prioritize both technical robustness and the preservation of human expertise.As AI becomes increasingly embedded in software engineering workflows,this research offers timely insights into how developers and organizations can responsibly integrate intelligent systems to promote accountability,resilience,and innovation across the software development lifecycle.
基金This research was supported by"Zhejiang Soft Science Research Program,Grant no:2021C35016".
文摘Using the differences and complementarities between human intelligence and artificial intelligence(AI),a hybrid-augmented intelligence,that is both stronger than human intelligence and AI,is created through Human-AI Cooperation(HAC)for teaching and learning.Human-AI Cooperation is infiltrating into all links of education,and recent research has focused a lot on the impact of teaching,learning,management,and evaluation with Human-AI Cooperation.However,AI still has its limits of intelligence,and cannot cooperate as humans.Thus,it is critical to study the obstacles of Human-AI Cooperation in education,as AI plays a role as a partner,not a tool.This study discussed for the first time how teachers and AI cooperate based on Multiple Intelligences of AI proposed by Andrzej Cichocki and puts forward a new Human-AI Cooperation teaching mode:human in the loop and teaching as leadership.It is proposed that humans in the loop and teaching as leadership can solve the problem that AI cannot cope with complex and dynamic teaching tasks in open situations,as well as the limits of intelligence for AI.
基金supported by the National Key Research and Development Program of China(2020AAA0107200)the National Natural Science Foundation of China(Grant Nos.61921006,61876119,62276126)the Natural Science Foundation of Jiangsu(BK20221442).
文摘Human-AI coordination aims to develop AI agents capable of effectively coordinating with human partners,making it a crucial aspect of cooperative multi-agent reinforcement learning(MARL).Achieving satisfying performance of AI agents poses a long-standing challenge.Recently,ah-hoc teamwork and zero-shot coordination have shown promising advancements in open-world settings,requiring agents to coordinate efficiently with a range of unseen human partners.However,these methods usually assume an overly idealistic scenario by assuming homogeneity between the agent and the partner,which deviates from real-world conditions.To facilitate the practical deployment and application of human-AI coordination in open and real-world environments,we propose the first benchmark for open and real-world human-AI coordination(ORC)called ORCBench.ORCBench includes widely used human-AI coordination environments.Notably,within the context of real-world scenarios,ORCBench considers heterogeneity between AI agents and partners,encompassing variations in capabilities and observations,which aligns more closely with real-world applications.Furthermore,we introduce a framework known as Heterogeneous training with Communication(HeteC)for ORC.HeteC builds upon a heterogeneous training framework and enhances partner population diversity by using mixed partner training and frozen historical partners.Additionally,HeteC incorporates a communication module that enables human partners to communicate with AI agents,mitigating the adverse effects of partially observable environments.Through a series of experiments,we demonstrate the effectiveness of HeteC in improving coordination performance.Our contribution serves as an initial but important step towards addressing the challenges of ORC.
文摘This paper explores effective human-AI collaboration in academic writing using Large Language Models(LLMs).Focusing on the two critical stages of ideation and revision,the article argues that higher education institutions must develop specific pedagogical strategies to guide students in leveraging the benefits of LLMs while mitigat-ing risks such as academic integrity issues,over-reliance,and bias.The core of these strategies is to emphasize the primacy of human agency,critical thinking,and ethical responsibility.The ultimate goal is to transform AI from a potential pitfall into a powerful tool that enhances scholarly skills and depth of thought,rather than being used as a simple text generator.