期刊文献+
共找到100篇文章
< 1 2 5 >
每页显示 20 50 100
Investigation of control effects of end-wall selfadaptive jet on three-dimensional corner separation of a highly loaded compressor cascade 被引量:1
1
作者 Hejian WANG Bo LIU +2 位作者 Xiaochen MAO Botao ZHANG Zonghao YANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期109-126,共18页
To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),... To overcome the limitations posed by three-dimensional corner separation,this paper proposes a novel flow control technology known as passive End-Wall(EW)self-adaptive jet.Two single EW slotted schemes(EWS1 and EWS2),alongside a combined(COM)scheme featuring double EW slots,were investigated.The results reveal that the EW slot,driven by pressure differentials between the pressure and suction sides,can generate an adaptive jet with escalating velocity as the operational load increases.This high-speed jet effectively re-excites the local low-energy fluid,thereby mitigating the corner separation.Notably,the EWS1 slot,positioned near the blade leading edge,exhibits relatively low jet velocities at negative incidence angles,causing jet separation and exacerbating the corner separation.Besides,the EWS2 slot is close to the blade trailing edge,resulting in massive low-energy fluid accumulating and separating before the slot outlet at positive incidence angles.In contrast,the COM scheme emerges as the most effective solution for comprehensive corner separation control.It can significantly reduce the total pressure loss and improve the static pressure coefficient for the ORI blade at 0°-4° incidence angles,while causing minimal negative impact on the aerodynamic performance at negative incidence angles.Therefore,the corner stall is delayed,and the available incidence angle range is broadened from -10°--2°to -10°-4°.This holds substantial promise for advancing the aerodynamic performance,operational stability,and load capacity of future highly loaded compressors. 展开更多
关键词 Three-dimensional corner separation End-wall adaptive jet Total pressure loss highly loaded compressor cascade Compressors
原文传递
Enhancing Aerodynamic Performances of Highly Loaded Compressor Cascades via Air Injection 被引量:4
2
作者 冯冬民 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2009年第2期121-128,共8页
This article experimentally studies the effects of air injection near the blade trailing edge on flow separation and losses in a highly loaded linear compressor cascade. Aerodynamic parameters of eight cascades with d... This article experimentally studies the effects of air injection near the blade trailing edge on flow separation and losses in a highly loaded linear compressor cascade. Aerodynamic parameters of eight cascades with different air injection slot configura- tions are measured by using a five-hole probe at the cascade outlets. Ink-trace flow visualization is performed to obtain the flow details around the air injection slots. The static pressure distribution is clarified with pressure taps on the endwalls. The... 展开更多
关键词 highly loaded compressor experimental study air injection aerodynamic performance
原文传递
Using tandem blades to break loading limit of highly loaded axial compressors 被引量:7
3
作者 Baojie LIU Chuanhai ZHANG +2 位作者 Guangfeng AN Du FU Xianjun YU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期165-175,共11页
It is confirmed that tandem-blade configurations have potential to enlarge the flow turning in two-dimension(2D) studies. However, the potential of tandem blades to enlarge the design space for highly loaded axial com... It is confirmed that tandem-blade configurations have potential to enlarge the flow turning in two-dimension(2D) studies. However, the potential of tandem blades to enlarge the design space for highly loaded axial compressors was rarely investigated in open literatures. The present work aims to show the capability of tandem blades to break the loading limit of conventional blades for highly loaded compressors. The 2D models of the maximum static pressure rise derived in previous work were validated by a large amount experimental data, which showed a good agreement. An E parameter was defined to evaluate the stall margin of compressor based on the theoretical models, which indicated that the tandem blade was able to increase the loading limit of axial compressors. A single-blade stage with a loading coefficient of 0.46(based on the blade tip rotating speed) was designed as the baseline case under the guidance of the E parameter. A tandem-blade stage was then designed by ensuring that the velocity triangles were similar to the single-blade stage. The performances of both stages were investigated experimentally. The results showed that the maximum efficiency of the tandem-blade stage was 92.8%, 1% higher than the single;the stall margin increased from 16.9% to 22.3%. Besides, the maximum pressure rise of tandem rotors was beyond the loading limit of 2D single-blade cascades, which confirmed the potential of tandem blades to break the loading limit of axial compressors. 展开更多
关键词 CASCADES highly loaded axial compressors loading limit Single blades Tandem blades
原文传递
The Development of Highly Loaded Turbine Rotating Blades by Using 3D Optimization Design Method of Turbomachinery Blades Based on Artificial Neural Network & Genetic Algorithm 被引量:3
4
作者 周凡贞 冯国泰 蒋洪德 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第4期198-202,共5页
In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic alg... In order to improve turbine internal efficiency and lower manufacturing cost, a new highly loaded rotating blade has been developed. The 3D optimization design method based on artificial neural network and genetic algorithm is adopted to construct the blade shape. The blade is stacked by the center of gravity in radial direction with five sections. For each blade section, independent suction and pressure sides are constructed from the camber line using Bezier curves. Three-dimensional flow analysis is carried out to verify the performance of the new blade. It is found that the new blade has improved the blade performance by 0.5%. Consequently, it is verified that the new blade is effective to improve the turbine internal efficiency and to lower the turbine weight and manufacturing cost by reducing the blade number by about 15%. 展开更多
关键词 optimization design highly loaded rotating blades artificial neural network genetic algorithm
在线阅读 下载PDF
Numerical evaluation of tandem rotor for highly loaded transonic fan 被引量:1
5
作者 ZHAO Bin LIU Bao-jie 《航空动力学报》 EI CAS CSCD 北大核心 2011年第6期1352-1361,共10页
Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-di... Transonic tandem rotor was designed for highly loaded fan at a corrected tip speed of 381 m/s and another conventional rotor was designed as a baseline to evaluate the loading superiority of tandem rotor with three-dimensional(3-D) numerical simulation.The aft blade solidity and its impact on total loading level were studied in depth.The result indicates that tandem rotor has potential to achieve higher loading level and attain favorable aerodynamic performance in a wide range of loading coefficient 0.55~0.68,comparing with the conventional rotor which produced a total pressure ratio of 2.0 and loading coefficient of 0.42. 展开更多
关键词 transonic fan tandem rotor highly loaded loading coefficient numerical simulation
原文传递
Adaptive Coanda jet control for performance improvement of a highly loaded compressor cascade
6
作者 Jian Zhang Min Zhang +4 位作者 Juan Du Kai Yue Xinyi Wangf Chen Yang Hongwu Zhang 《Propulsion and Power Research》 2024年第4期534-552,共19页
Gas turbine is a promising device for power generation and propulsion either using traditional or renewable energy fuels.One of its key problems is the flow instability of compressors especially with the increase in b... Gas turbine is a promising device for power generation and propulsion either using traditional or renewable energy fuels.One of its key problems is the flow instability of compressors especially with the increase in blade load and changeable working environment.To intelligently and efficiently inhibit flow separation and enhance the pressure rise ability of highly loaded compressors under variable operating conditions,a novel flow control technique termed as adaptive Coanda jet control(ACJC)is proposed in this paper for a compressor stator cascade with a high diffusion factor of 0.66.To realize the ACJC strategy,an incidence angle(IA)prediction model and an optimal injection mass flow rate(OIMFR)prediction model are established by adopting single factor analysis of variance,principal component analysis and Back Propagation Neural Network(BPNN)methods.Two inlet Mach numbers including 0.1 and 0.4 are considered to represent incompressible and compressible flow conditions,and different inlet incidence angles are involved to model various off-design working situations of the real compressor.Effectiveness of the ACJC system is evaluated using numerical simulations are performed to understand the effects of the injection mass flow ratio on the flow field and aerodynamic performance of the blade cascade.Results indicate that the ACJC system can accurately predict the optimal injection mass flow ratio that can achieve the minimum flow loss at each incidence angle.Compared to the cascade without ACJC under the incidence angel of 5,the optimal injection mass flow ratio being 1.27%and 1.20%can reduce the total pressure loss coefficient by 18.88%and 21.56%for incoming Mach number being 0.1 and 0.4,respectively. 展开更多
关键词 Gas turbine highly loaded compressor Flow control technique Adaptive Coanda jet control Aerodynamic performance
原文传递
High Fe‑Loading Single‑Atom Catalyst Boosts ROS Production by Density Effect for Efficient Antibacterial Therapy
7
作者 Si Chen Fang Huang +5 位作者 Lijie Mao Zhimin Zhang Han Lin Qixin Yan Xiangyu Lu Jianlin Shi 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期187-203,共17页
The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs ... The current single-atom catalysts(SACs)for medicine still suffer from the limited active site density.Here,we develop a synthetic method capable of increasing both the metal loading and mass-specific activity of SACs by exchanging zinc with iron.The constructed iron SACs(h^(3)-FNC)with a high metal loading of 6.27 wt%and an optimized adjacent Fe distance of~4 A exhibit excellent oxidase-like catalytic performance without significant activity decay after being stored for six months and promising antibacterial effects.Attractively,a“density effect”has been found at a high-enough metal doping amount,at which individual active sites become close enough to interact with each other and alter the electronic structure,resulting in significantly boosted intrinsic activity of single-atomic iron sites in h^(3)-FNCs by 2.3 times compared to low-and medium-loading SACs.Consequently,the overall catalytic activity of h^(3)-FNC is highly improved,with mass activity and metal mass-specific activity that are,respectively,66 and 315 times higher than those of commercial Pt/C.In addition,h^(3)-FNCs demonstrate efficiently enhanced capability in catalyzing oxygen reduction into superoxide anion(O_(2)·^(−))and glutathione(GSH)depletion.Both in vitro and in vivo assays demonstrate the superior antibacterial efficacy of h^(3)-FNCs in promoting wound healing.This work presents an intriguing activity-enhancement effect in catalysts and exhibits impressive therapeutic efficacy in combating bacterial infections. 展开更多
关键词 Nanocatalytic medicine Single-atom catalysts Reactive oxygen species(ROS) High metal loading Oxidase catalysis
在线阅读 下载PDF
Eggshell-inspired high-load rigid porous microcapsules for efficient self-healing of multimodal damage in insulating materials
8
作者 Chaolu Niu Wenxia Sima +10 位作者 Potao Sun Qichang Liu Tao Yuan Ming Yang Zheng Fang Hefei Wang Wenxu Tang Jiameng Xu Yuhang Yang Yuxiang Mai Binghao Chen 《iEnergy》 2025年第3期205-214,共10页
To address the inherent trade-off between mechanical strength and repair efficiency in conventional microcapsule-based self-healing technologies,this study presents an eggshell-inspired approach for fabricating high-l... To address the inherent trade-off between mechanical strength and repair efficiency in conventional microcapsule-based self-healing technologies,this study presents an eggshell-inspired approach for fabricating high-load rigid porous microcapsules(HLRPMs)through subcritical water etching.By optimizing the subcritical water treatment parameters(OH−concentration:0.031 mol/L,tem-perature:240°C,duration:1.5 h),nanoscale through-holes were generated on hollow glass microspheres(shell thickness≈700 nm).The subsequent gradient pressure infiltration of flaxseed oil enabled a record-high core content of 88.2%.Systematic investigations demonstrated that incorporating 3 wt%HLRPMs into epoxy resin composites preserved excellent dielectric properties(breakdown strength≥30 kV/mm)and enhanced tensile strength by 7.52%.In addressing multimodal damage,the system achieved a 95.5%filling efficiency for mechanical scratches,a 97.0%reduction in frictional damage depth,and a 96.2%recovery of insulation following electrical treeing.This biomimetic microcapsule system concurrently improved self-healing capability and matrix performance,offering a promising strategy for the development of next-generation smart insulating materials. 展开更多
关键词 Eggshell-inspired structure MICROCAPSULES high loading rate multimodal damage SELF-HEALING
在线阅读 下载PDF
High mass-loading polyaniline anode with high areal capacity and excellent cycling stability for AlCl_(2)^(+)storage
9
作者 Xiaodong Zhi Yue Shen +5 位作者 Ruiying Zhang Jiuzeng Jin Zhongmin Feng Yun Wang Jianghua Zhang Ting Sun 《Journal of Energy Chemistry》 2025年第8期367-375,共9页
Rechargeable aqueous aluminum ion batteries(AIBs)are inspiring researchers’enthusiasm due to the low cost and high theoretical capacity of aluminum.Polyaniline(PANI)materials have the potential for aluminum ion stora... Rechargeable aqueous aluminum ion batteries(AIBs)are inspiring researchers’enthusiasm due to the low cost and high theoretical capacity of aluminum.Polyaniline(PANI)materials have the potential for aluminum ion storage due to the properties of its excellent conductivity and inherent theoretical capacity.However,the poor cycling stability and low loadings of PANI limit its application in energy storage.In this study,PANI-x electrodes with high mass loadings are successfully prepared by the electrodeposition method for reversible AlCl_(2)^(+)storage.Among them,the PANI-2 electrode possesses the highest areal capacity(0.59 and 0.51 mAh cm^(−2)at the current density of 0.5 and 10 mA cm^(−2))and excellent cycling stability in saturated AlCl3.Ex situ N 1s fitting spectra of PANI-2 and molecular dynamics simulations of 1 M,3 M,and saturated AlCl_(3)electrolytes demonstrate that PANI can achieve reversible redox reactions in saturated AlCl3,thereby achieving its excellent stability.Density functional theory calculations and ex situ spectra characterizations of PANI-2 demonstrate the insertion/de-insertion mechanism in the form of AlCl_(2)^(+)ions.In conclusion,PANI-2|Saturated AlCl_(3)|EG(exfoliated graphite foil)full cell is assembled successfully.This work provides promising guidance for the preparation of high-loading electrodes for AIBs. 展开更多
关键词 POLYANILINE High loadings AlCl_(2)^(+)insertion/de-insertion mechanism Exfoliated graphite foil Aluminum ion batteries
在线阅读 下载PDF
Dynamic tensile behaviour of rocks under confining pressure and high-rate loadings
10
作者 Kai Liu Chunjiang Zou Jian Zhao 《Earth Energy Science》 2025年第1期9-21,共13页
Tensile cracking is a predominant mode of failure in rocks within underground resource excavation and engineering structures,where rocks are frequently subjected to dynamic disturbances while simultaneously experienci... Tensile cracking is a predominant mode of failure in rocks within underground resource excavation and engineering structures,where rocks are frequently subjected to dynamic disturbances while simultaneously experiencing in-situ stresses.This paper proposes a new dynamic split tension setup utilising a cubic specimen to investigate the dynamic behaviour of rocks across various tensile strain rates and confining pressures.The objective is to extend the applicability of the triaxial Hopkinson bar in studying dynamic behaviour of geomaterials.For comparison,the dynamic Brazilian disc(BD)tests were performed using three rock types(e.g.,sandstone,granite and marble)under different strain rates ranging from 10^(−3)∼10^(2) s^(−1).Besides,the Digital Image Correlation(DIC)technique was adopted to measure full-field real-time tensile strain of rocks and demonstrated that tensile crack initiated at the middle part and split the specimen into two similar halves.Effects of specimen size,geometry,loading rate as well as the confining pressure are investigated in detail.The dynamic fracture behaviours,including dynamic tensile strength,tensile strain,time to fracture and dynamic increase factor(DIF),were characterised for the rocks.It is found that dynamic tensile strength of rock minimal dependence on size and geometry but is significantly influenced by loading rate and confinement.It exhibited a linear increase with strain rate(10^(0)∼10^(2) s^(−1))and demonstrated a nonlinear growth with lateral confinement from 0 to 15 MPa.The nonlinear dependency on confinement can be attributed to the restriction imposed on the opening and propagation of tensile cracks due to the presence of confinement.These findings enhance our understanding of the safety aspects associated with underground rock excavations,particularly in situations where considering in-situ stress is crucial for evaluating the dynamic tensile failure of rocks. 展开更多
关键词 Triaxial Hopkinson Bar Split tension High strain rate loads Confinement effect
在线阅读 下载PDF
The Effect of Variable Stator on Performance of a Highly Loaded Tandem Axial Flow Compressor Stage 被引量:5
11
作者 Hamzeh Eshraghi Masoud Boroomand +2 位作者 Abolghasem M.Tousi Mohammad Toude Fallah Ali Mohammadi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2016年第3期223-230,共8页
Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it ... Increasing the aerodynamic load on compressor blades helps to obtain a higher pressure ratio in lower rotational speeds. Considering the high aerodynamic load effects and structural concerns in the design process, it is possible to obtain higher pressure ratios compared to conventional compressors. However, it must be noted that imposing higher aerodynamic loads results in higher loss coemcients and deteriorates the overall performance. To avoid the loss increase, the boundary layer quality must be studied carefully over the blade suction surface. Employment of advanced shaped airfoils (like CDAs), slotted blades or other boundary layer control methods has helped the de- signers to use higher aerodynamic loads on compressor blades. Tandem cascade is a passive boundary layer control method, which is based on using the flow momentum to control the boundary layer on the suction surface and also to avoid the probable separation caused by higher aerodynamic loads. In fact, the front pressure side flow momentum helps to compensate the positive pressure gradient over the aft blade's suction side. Also, in compari- son to the single blade stators, tandem variable stators have more degrees of freedom, and this issue increases the possibility of finding enhanced conditions in the compressor off-design performance. In the current study, a 3D design procedure for an axial flow tandem compressor stage has been applied to design a highly loaded stage. Following, this design is numerically investigated using a CFD code and the stage characteristic map is reported. Also, the effect of various stator stagger angles on the compressor performance and especially on the compressor surge margin has been discussed. To validate the CFD method, another known compressor stage is presented and its performance is numerically investigated and the results are compared with available experimental results. 展开更多
关键词 Compressor Stage highly loaded Performance Characteristic TANDEM Variable Stator
原文传递
Effect of Non-Axisymmetric End Wall on a Highly Loaded Compressor Cascade in Multi-Conditions 被引量:5
12
作者 HUANG Song YANG Chengwu +3 位作者 LI Ziliang HAN Ge ZHAO Shengfeng LU Xin’gen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1363-1375,共13页
As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103... As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103,the study found the optimal non-axisymmetric profiled end wall decreases total pressure loss coefficient by 4.57%,5.48%and 3.04%under incidences of–3°,0°,and 3°,respectively,compared with those of the planar end wall.The optimal non-axisymmetric profiled end wall changes the structure of secondary flow in hub region,generating a corner vortex near suction surface,inhibiting the development of the passage vortex towards suction surface and reducing flow separation.When the inlet Mach numbers are 0.62 and 0.72,the total pressure loss coefficient decreases by 3.19%and 4.58%for optimal non-axisymmetric profiled end wall compared with those of the planar end wall.Though optimal non-axisymmetric profiled end wall increases total pressure loss near hub region in blade passage under different inlet Mach numbers,the peak value and region of high loss coefficient above 10%span in blade passage significantly decrease.In addition,different incidences affect the secondary flow streamlines and vortex structure near the cascade hub region,however,different inlet Mach numbers hardly change the secondary flow streamlines and vortex structure.In short,the optimal non-axisymmetric profiled end wall shows better aerodynamic performance than the planar end wall for the highly loaded compressor cascade in multi-conditions. 展开更多
关键词 non-axisymmetric profiled end wall total pressure loss highly loaded compressor cascade passage vortex
原文传递
Parameter Survey of Thermally Highly Loaded,Porous and Cooled Multi-Layer Systems for Turbine Blades
13
作者 Peng Shan Dieter Bohn +1 位作者 Jing Ren N.Surken 《Journal of Thermal Science》 SCIE EI CAS CSCD 2007年第2期181-185,共5页
This study is an advanced investigation for the cooling of high temperature turbine vanes and blades. The efficient heat exchanging near the surface of a blade may be achieved by forcing a cooling air flow emitting ou... This study is an advanced investigation for the cooling of high temperature turbine vanes and blades. The efficient heat exchanging near the surface of a blade may be achieved by forcing a cooling air flow emitting out of a thin layer of the porous metal which is pasted on the structural high strength metal. The contents include the consideration on the computational model of heat transfer through a layer of porous material, the concrete modeling and the analysis of the model, the numerical survey of key parameters for both the two-layer porous materials and the heat transfer fluid flow passing through the model channels. The results revealed that the constructed system is reasonable. Proposed an evaluation formula for the porous material heat transfer efficiency. 展开更多
关键词 heat transfer thermally highly loaded POROUS MULTI-LAYER
原文传递
Inducer/Exducer Matching Characteristics inside Tandem Impellers of a Highly Loaded Centrifugal Compressor
14
作者 LI Ziliang ZHAO Shengfeng +3 位作者 LU Xin’gen HAN Ge YANG Chengwu ZHU Junqiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期928-944,共17页
A centrifugal compressor usually operates with low isentropic efficiency and a terrible stable operating range, resulting from the complex impeller flow structure companied with the intense interaction among the impel... A centrifugal compressor usually operates with low isentropic efficiency and a terrible stable operating range, resulting from the complex impeller flow structure companied with the intense interaction among the impeller and the diffuser downstream. In many studies, the potential of centrifugal compressor tandem-impeller configurations for improving the compressor has been demonstrated. Whereas, compared with the convincing results on the tandem-designed axial compressors, the results on tandem impellers are limited and contradictory. Very little insight has been provided into the flow mechanisms inside tandem impellers, which is considered to be the primary reason for the confusion in tandem impeller design and application. Tandem impellers are expected to exhibit a totally different behavior due to the intense aerodynamic interaction between the inducer and the exducer, which substantially contributes to the flow structure and the compressor performance change. In the present study, a numerical study of a highly-loaded centrifugal compressor with various tandem designs was conducted to explore the inducer/exducer matching characteristics and the underlying flow mechanism inside tandem impellers. Two tandem impeller design parameters, namely, the inducer/exducer clocking fraction and the axial gap(overlap), were considered in the tandem impeller design process. The tandem impeller was also compared to the existing conventional impeller which the tandem impeller was redesigned for. The results demonstrated that the tandem-designed impeller can improve the centrifugal compressor stage performance and intense inducer/exducer interaction can be observed with changes in the clocking fraction and the axial gap(overlap). The tandem impeller performance is sensitive to changes in axial gap(overlap) when the suction side of the exducer blade is circumferentially close to the inducer blade. The fundamental reason for the performance variation in the inducer and the exducer lies in the inducer pressure change in the blade trailing edge that is determined by the Kutta condition. Additionally, the correlation between the tandem impeller slip effect and the discharge flow quality should be emphasized in the inducer/exducer gap jet analysis, in which the jet injection angle and the Coanda effect of the exducer suction surface critically affect the discharge flow characteristics. 展开更多
关键词 highly loaded centrifugal compressor tandem impeller inducer/exducer matching flow mechanism Kutta condition
原文传递
High loading Pt nanoparticles on ordered mesoporous carbon sphere arrays for highly active methanol electro-oxidation 被引量:3
15
作者 Cheng-Wei Zhang Lian-Bin Xu Jian-Feng Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2016年第6期832-836,共5页
Three-dimensionally(3D) ordered mesoporous carbon sphere arrays(OMCS) are explored to support high loading(60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction(MOR).The OMCS has a u... Three-dimensionally(3D) ordered mesoporous carbon sphere arrays(OMCS) are explored to support high loading(60 wt%) Pt nanoparticles as electrocatalysts for the methanol oxidation reaction(MOR).The OMCS has a unique hierarchical nanostructure with ordered large mesopores and macropores that can facilitate high dispersion of the Pt nanoparticles and fast mass transport during the reactions. The prepared Pt/OMCS exhibits uniformly dispersed Pt nanoparticles with an average size of- 2.0 nm on the mesoporous walls of the carbon spheres. The Pt/OMCS catalyst shows significantly enhanced specific electrochemically active surface area(ECSA)(73.5 m^2g^-1) and electrocatalytic activity(0.69 mA cm^-2)for the MOR compared with the commercial 60 wt% Pt/C catalyst. 展开更多
关键词 CARBON Pt nanoparticles High loading ELECTROCATALYST Methanol oxidation reaction Fuel cell
原文传递
Aerodynamic Performance Improvement of a Highly Loaded Compressor Airfoil with Coanda Jet Flap 被引量:3
16
作者 ZHANG Jian DU Juan +3 位作者 ZHANG Min CHEN Ze ZHANG Hongwu NIE Chaoqun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第1期151-162,共12页
Coanda jet flap is an effective flow control technique,which offers pressurized high streamwise velocity to eliminate the boundary layer flow separation and increase the aerodynamic loading of compressor blades.Tradit... Coanda jet flap is an effective flow control technique,which offers pressurized high streamwise velocity to eliminate the boundary layer flow separation and increase the aerodynamic loading of compressor blades.Traditionally,there is only single-jet flap on the blade suction side.A novel Coanda double-jet flap configuration combining the front-jet slot near the blade leading edge and the rear-jet slot near the blade trailing edge is proposed and investigated in this paper.The reference highly loaded compressor profile is the Zierke&Deutsch double-circular-arc airfoil with the diffusion factor of 0.66.Firstly,three types of Coanda jet flap configurations including front-jet,rear-jet and the novel double-jet flaps are designed based on the 2D flow fields in the highly loaded compressor blade passage.The Back Propagation Neural Network(BPNN)combined with the genetic algorithm(GA)is adopted to obtain the optimal geometry for each type of Coanda jet flap configuration.Numerical simulations are then performed to understand the effects of the three optimal Coanda jet flaps on the compressor airfoil performance.Results indicate all the three types of Coanda jet flaps effectively improve the aerodynamic performance of the highly loaded airfoil,and the Coanda double-jet flap behaves best in controlling the boundary layer flow separation.At the inlet flow condition with incidence angle of 5°,the total pressure loss coefficient is reduced by 52.5%and the static pressure rise coefficient is increased by 25.7%with Coanda double-jet flap when the normalized jet mass flow ratio of the front jet and the rear jet is equal to 1.5%and 0.5%,respectively.The impacts of geometric parameters and jet mass flow ratios on the airfoil aerodynamic performance are further analyzed.It is observed that the geometric design parameters of Coanda double-jet flap determine airfoil thickness and jet slot position,which plays the key role in supressing flow separation on the airfoil suction side.Furthermore,there exists an optimal combination of front-jet and rear-jet mass flow ratios to achieve the minimum flow loss at each incidence angle of incoming flow.These results indicate that Coanda double-jet flap combining the adjust of jet mass flow rate varying with the incidence angle of incoming flow would be a promising adaptive flow control technique. 展开更多
关键词 Coanda jet flap high loaded compressor active flow control aerodynamic performance
原文传递
A fast approach to optimize dye loading of photoanode via ultrasonic technique for highly efficient dye-sensitized solar cells 被引量:1
17
作者 Jue Chen Xing Li +1 位作者 Wenjun Wu Jianli Hua 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第6期750-755,共6页
A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at ... A distinctive method is proposed by simply utilizing ultrasonic technique in Ti02 electrode fabrication in order to improve the optoelectronic performance of dye-sensitized solar cells (DSSCs). Dye molecules are at random and single molecular state in the ultrasonic field and the ultrasonic wave favors the diffusion and adsorption processes of dye molecules. As a result, the introduction of ultrasonic technique at room temperature leads to faster and more well-distributed dye adsorption on TiO2 as well as higher cell efficiency than regular deposition, thus the fabrication time is markedly reduced. It is found that the device based on 40 kHz ultrasonic (within 1 h) with N719 exhibits a Voc of 789 mV, Jsc of 14.94 mA]cm2 and fill factor (FF) of 69.3, yielding power conversion efficiency (PCE) of 8.16%, which is higher than device regularly dyed for 12 h (PCE = 8.06%). In addition, the DSSC devices obtain the best efficiency (PCE = 8.68%) when the ultrasonic deposition time increases to 2.5 h. The DSSCs fabricated via ultrasonic technique presents more dye loading, larger photocurrent, less charge recombination and higher photovoltage. The charge extraction and electron impedance spectroscopy (EIS) were performed to understand the influence of ultrasonic technique on the electron recombination and performance of DSSCs. 展开更多
关键词 Ultrasonic technique Fast dye loading Photoanode High efficiency DSSC
在线阅读 下载PDF
Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty
18
作者 Juan Li Tingting Xu +3 位作者 Yi Gu Chuang Liu Guiping Zhou Guoliang Bian 《Energy Engineering》 EI 2024年第10期2777-2795,共19页
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un... In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit. 展开更多
关键词 High energy load of electrofused magnesium wind energy consumption thermal power unit wind power uncertainty two-layer optimization
在线阅读 下载PDF
Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries
19
作者 Tengfei Yang Jingshuai Xiao +2 位作者 Xiao Sun Yan Song Chaozheng He 《Chinese Chemical Letters》 2025年第3期494-499,共6页
Lithium-sulfur batteries are considered to be a new generation of high energy density batteries due to their non-toxicity,low cost and high theoretical specific capacity.However,the development of practical lithium-su... Lithium-sulfur batteries are considered to be a new generation of high energy density batteries due to their non-toxicity,low cost and high theoretical specific capacity.However,the development of practical lithium-sulfur batteries is seriously impeded by the sluggish multi-electron redox reaction of sulfur species and obstinate shuttle effect of polysulfides.In this study,a porous lanthanum oxychloride(LaOCl)nanofiber is designed as adsorbent and electrocatalyst of polysulfides to regulate the redox kinetics and suppress shuttling of sulfur species.Benefiting from the porous architecture and luxuriant active site of LaOCl nanofibers,the meliorative polarization effect and sulfur expansion can be accomplished.The LaOCl/S electrode exhibits an initial discharge specific capacity of 1112.3 mAh/g at 0.1 C and maintains a superior cycling performance with a slight decay of 0.02%per cycle over 1000 cycles at 1.0 C.Furthermore,even under a high sulfur loading of 4.6mg/cm^(2),the S cathode with LaOCl nanofibers still retains a high reversible areal capacity of 4.2 mAh/cm^(2)at 0.2 C and a stable cycling performance.Such a porous host expands the application of rare earth based catalysts in lithium-sulfur batteries and provides an alternative approach to facilitate the polysulfides conversion kinetics. 展开更多
关键词 Lithium-sulfur batteries POLYSULFIDES Shuttle effect LaOCl nanofibers High sulfur loading
原文传递
A review of the experimental and numerical studies on the compression behavior of the additively produced metallic lattice structures at high and low strain rates
20
作者 Muhammad Arslan Bin Riaz Mustafa Guden 《Defence Technology(防务技术)》 2025年第7期1-49,共49页
Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in... Recent advances in additive manufacturing have enabled the construction of metallic lattice structures with tailored mechanical and functional properties.One potential application of metallic lattice struc-tures is in the impact load mitigation where an external kinetic energy is absorbed by the deformation/crushing of lattice cells.This has motivated a growing number of experimental and numerical studies,recently,on the crushing behavior of additively produced lattice structures.The present study overviews the dynamic and quasi-static crushing behavior of additively produced Ti64,316L,and AlSiMg alloy lattice structures.The first part of the study summarizes the main features of two most commonly used additive processing techniques for lattice structures,namely selective-laser-melt(SLM)and electro-beam-melt(EBM),along with a description of commonly observed process induced defects.In the second part,the deformation and strain rate sensitivities of the selected alloy lattices are outlined together with the most widely used dynamic test methods,followed by a part on the observed micro-structures of the SLM and EBM-processed Ti64,316L and AlSiMg alloys.Finally,the experimental and numerical studies on the quasi-static and dynamic compression behavior of the additively processed Ti64,316L,and AlSiMg alloy lattices are reviewed.The results of the experimental and numerical studies of the dynamic properties of various types of lattices,including graded,non-uniform strut size,hollow,non-uniform cell size,and bio-inspired,were tabulated together with the used dynamic testing methods.The dynamic tests have been noted to be mostly conducted in compression Split Hopkinson Pressure Bar(SHPB)or Taylor-and direct-impact tests using the SHPB set-up,in all of which relatively small-size test specimens were tested.The test specimen size effect on the compression behavior of the lattices was further emphasized.It has also been shown that the lattices of Ti64 and AlSiMg alloys are relatively brittle as compared with the lattices of 316L alloy.Finally,the challenges associated with modelling lattice structures were explained and the micro tension tests and multi-scale modeling techniques combining microstructural characteristics with macroscopic lattice dynamics were recommended to improve the accuracy of the numerical simulations of the dynamic compression deformations of metallic lattice structures. 展开更多
关键词 Metallic lattice structures Additive manufacturing Strain rate sensitivity MICROSTRUCTURE Dynamic compression High strain rate loading MODELLING
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部