The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosu...The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosure can be decomposed into independent parts and the radiation modes contribute to potential energy independently. The control strategy for minimizing first G radiation modes with large radiation efficiency is proposed, and the optimal model of control forces is presented. Finally, a numerical simulation for minimizing sound transmission into a rectangular enclosure using the proposed method is conducted. Simulation results indicate that one control force can control one radiation mode and controlling the first four-order radiation modes with four control forces can achieve significant potential energy reduction at the low frequency range.展开更多
This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-be...This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.展开更多
It is a difficult challenge to simultaneously employ the cationic and anionic redox chemistry in cathode materials for sodium-ion batteries with high energy.Even though layered oxides(classified as two-dimensional oxi...It is a difficult challenge to simultaneously employ the cationic and anionic redox chemistry in cathode materials for sodium-ion batteries with high energy.Even though layered oxides(classified as two-dimensional oxides)demonstrate excellent promise in the high discharge capacity,their poor oxygen transformation via redox reactions is limited by crystal instability.Therefore,a doping strategy was conceived to tackle this issue and increase redox efficiency.K doping was applied to transform the two-dimensional Na_(1.3)Mn_(0.7)O_(2)(NMO)to threedimensional K_(0.2)Na_(1.3)Mn_(0.5)O_(2)(KNMO),preventing the irreversible phase shift and preserving the crystal structure’s stability while cycling.With this modification treatment,KNMO features manganese and oxygen reactive sites,delivering a promising energy density of 190mAh·g^(-1)at 5 mA·g^(-1)in the 2.0–4.5 V voltage range(vs71.4 mAh·g^(-1)for the pristine NMO).Moreover,it displays improved capacity retention of more than 83.5%after 50cycles at 50 mA·g^(-1).The results demonstrated that doped intercalation oxides were promising for redox oxygen transformation in sodium-ion batteries.展开更多
Material irradiation effect plays an important role in material science.However,it is lack of high-throughput irradiation facility and process of evolution and development,which lead to lack of basic scientific theory...Material irradiation effect plays an important role in material science.However,it is lack of high-throughput irradiation facility and process of evolution and development,which lead to lack of basic scientific theory about atomic scale materials design and development guidance.High-performance computing for simulation makes deeply understanding of micro-level-material possible.In this paper,a new data structure is proposed for the parallel simulation of metal materials evolution with crystal structure under irradiation defects.Compared with LAMMPS and IMD,which are two popular molecular dynamic simulation versions,our method takes much less memory on multi-core clusters.展开更多
After the construction of the main enclosure of subway station is completed, some concrete structures need to be removed. The traditional construction method is used to solve the problem of damage and noise pollution ...After the construction of the main enclosure of subway station is completed, some concrete structures need to be removed. The traditional construction method is used to solve the problem of damage and noise pollution caused by the finished products of the main structure easily. The construction quality of other main enclosure structures is guaranteed. The technological principle, construction process and safety quality control points of rope saw cutting construction of main retaining structure of subway station are introduced emphatically.展开更多
The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony fur...The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony furnishings and even construction.Wood offers a good choice on all of these scales and can be modified and improved in many different ways.In this study,two common European hardwood species,Beech(Fagus sylvatica L.)and Ash(Fraxinus excelsior L.)were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties.Compression in the three main directions(longitudinal,tangential,radial)and tension perpendicular to the grain(tangential,radial)were tested and compared to reference specimens with native density.Strength and modulus of elasticity were determined in all tests.In addition,a Life Cycle Assessment was carried out to evaluate the environmental impact associated to the densification process.The experimental investigations showed that strength and stiffness of hardwood in the longitudinal and tangential directions improve significantly by radial densification,whereas some properties in the radial direction decrease.The Life Cycle Assessment showed that artificial wood drying has higher impact than wood densification.Furthermore,the transport distance of the raw material highly influences the environmental impact of the final densified product.The paper then also offers an overview of possible applications in structural timber construction.Densified hardwood is a viable option as local reinforcement,where high compressive or tensile strength is needed.The wood densification process offers an alternative to the use of carbon-intense steel components or hardwoods from tropical forests.展开更多
基金Supported by the National Natural Science Foundation of China(50375027,50575041)~~
文摘The problem of active structural acoustic control in an enclosure using radiation mode is investigated. The response of the coupled enclosure is derived in terms of radiation modes. The potential energy in the enclosure can be decomposed into independent parts and the radiation modes contribute to potential energy independently. The control strategy for minimizing first G radiation modes with large radiation efficiency is proposed, and the optimal model of control forces is presented. Finally, a numerical simulation for minimizing sound transmission into a rectangular enclosure using the proposed method is conducted. Simulation results indicate that one control force can control one radiation mode and controlling the first four-order radiation modes with four control forces can achieve significant potential energy reduction at the low frequency range.
文摘This paper discusses the issue of performance requirements and construction criteria for masonry enclosure and infill walls. Vertical building enclosures in European countries are very often constituted by non-load-bearing masonry walls, using horizontally perforated clay bricks. These walls are generally supported and confined by a reinforced concrete frame structure of columns and beams/slabs. Since these walls are commonly considered to be nonstructural elements and their influence on the structural response is ignored, their consideration in the design of structures as well as their connection to the adjacent structural elements is frequently negligent or insufficiently detailed. As a consequence, nonstructural elements, as for wall enclosures, are relatively sensitive to drift and acceleration demands when buildings are subjected to seismic actions. Many international standards and technical documents stress the need for design acceptability criteria for nonstructural elements, however they do not specifically indicate how to prevent collapse and severe cracking, and how to enhance the overall stability in the case of moderate to high seismic loading. Furthermore, a review of appropriate measures to improve enclosure wall performance and both in-plane and out-of-plane integrity under seismic actions is addressed.
基金financially supported by the Scientific Research Startup Fund for Shenzhen High-Caliber Personnel of SZPT(No.6021310029K)Research Projects of Department of Education of Guangdong Province(No.2023KTSCX319)。
文摘It is a difficult challenge to simultaneously employ the cationic and anionic redox chemistry in cathode materials for sodium-ion batteries with high energy.Even though layered oxides(classified as two-dimensional oxides)demonstrate excellent promise in the high discharge capacity,their poor oxygen transformation via redox reactions is limited by crystal instability.Therefore,a doping strategy was conceived to tackle this issue and increase redox efficiency.K doping was applied to transform the two-dimensional Na_(1.3)Mn_(0.7)O_(2)(NMO)to threedimensional K_(0.2)Na_(1.3)Mn_(0.5)O_(2)(KNMO),preventing the irreversible phase shift and preserving the crystal structure’s stability while cycling.With this modification treatment,KNMO features manganese and oxygen reactive sites,delivering a promising energy density of 190mAh·g^(-1)at 5 mA·g^(-1)in the 2.0–4.5 V voltage range(vs71.4 mAh·g^(-1)for the pristine NMO).Moreover,it displays improved capacity retention of more than 83.5%after 50cycles at 50 mA·g^(-1).The results demonstrated that doped intercalation oxides were promising for redox oxygen transformation in sodium-ion batteries.
文摘Material irradiation effect plays an important role in material science.However,it is lack of high-throughput irradiation facility and process of evolution and development,which lead to lack of basic scientific theory about atomic scale materials design and development guidance.High-performance computing for simulation makes deeply understanding of micro-level-material possible.In this paper,a new data structure is proposed for the parallel simulation of metal materials evolution with crystal structure under irradiation defects.Compared with LAMMPS and IMD,which are two popular molecular dynamic simulation versions,our method takes much less memory on multi-core clusters.
文摘After the construction of the main enclosure of subway station is completed, some concrete structures need to be removed. The traditional construction method is used to solve the problem of damage and noise pollution caused by the finished products of the main structure easily. The construction quality of other main enclosure structures is guaranteed. The technological principle, construction process and safety quality control points of rope saw cutting construction of main retaining structure of subway station are introduced emphatically.
文摘The demand for high-performance,yet eco-friendly materials is increasing on all scales from small applications in the car industry,instrument or furniture manufacturing to greater dimensions like floorings,balcony furnishings and even construction.Wood offers a good choice on all of these scales and can be modified and improved in many different ways.In this study,two common European hardwood species,Beech(Fagus sylvatica L.)and Ash(Fraxinus excelsior L.)were densified in radial direction by thermo-mechanical treatment and the densified product was investigated in an extensive characterisation series to determine all relevant mechanical properties.Compression in the three main directions(longitudinal,tangential,radial)and tension perpendicular to the grain(tangential,radial)were tested and compared to reference specimens with native density.Strength and modulus of elasticity were determined in all tests.In addition,a Life Cycle Assessment was carried out to evaluate the environmental impact associated to the densification process.The experimental investigations showed that strength and stiffness of hardwood in the longitudinal and tangential directions improve significantly by radial densification,whereas some properties in the radial direction decrease.The Life Cycle Assessment showed that artificial wood drying has higher impact than wood densification.Furthermore,the transport distance of the raw material highly influences the environmental impact of the final densified product.The paper then also offers an overview of possible applications in structural timber construction.Densified hardwood is a viable option as local reinforcement,where high compressive or tensile strength is needed.The wood densification process offers an alternative to the use of carbon-intense steel components or hardwoods from tropical forests.
文摘针对苏州轨道交通8号线采莲路站下穿既有轨道交通2号线高架桥深基坑工程,开展紧邻既有高架桥低净空下地铁车站深基坑施工数值模拟研究,并与实测结果进行对比,验证数值模拟方法的合理性.基于数值计算,研究围护结构、支撑体系参数和隔离桩设置等因素对桥桩变形的影响及变形控制措施.结果表明:可通过优化围护结构、支撑体系参数控制紧邻基坑的桥桩变形.影响程度为:围护结构厚度>围护结构材料(弹性模量)>钢支撑预加轴力,本基坑工程围护结构在原有厚度基础上增加至1.1倍、弹性模量选用35 GPa(C30混凝土)、钢支撑预加轴力65%以上更能有效控制桥桩变形.隔离桩结构参数是控制高架桥桩变形的关键因素,影响程度为:隔离桩与墩台距离>隔离桩深度>隔离桩材料>隔离桩厚度,低净空条件下优先选取钻孔灌注桩作为隔离桩,应设置于与既有高架桥墩相距4.5 m处,深度建议取基坑开挖深度1.4倍,厚度设置为0.55 m.