期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
Hysteresis modeling and compensation of piezo actuator with sparse regression
1
作者 JIN Yu WANG Xucheng +3 位作者 XU Yunlang YU Jianbo LU Qiaodan YANG Xiaofeng 《Journal of Systems Engineering and Electronics》 2025年第1期48-61,共14页
Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuato... Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuators.Existing methods for fitting hysteresis loops include operator class,differential equation class,and machine learning class.The modeling cost of operator class and differential equation class methods is high,the model complexity is high,and the process of machine learning,such as neural network calculation,is opaque.The physical model framework cannot be directly extracted.Therefore,the sparse identification of nonlinear dynamics(SINDy)algorithm is proposed to fit hysteresis loops.Furthermore,the SINDy algorithm is improved.While the SINDy algorithm builds an orthogonal candidate database for modeling,the sparse regression model is simplified,and the Relay operator is introduced for piecewise fitting to solve the distortion problem of the SINDy algorithm fitting singularities.The Relay-SINDy algorithm proposed in this paper is applied to fitting hysteresis loops.Good performance is obtained with the experimental results of open and closed loops.Compared with the existing methods,the modeling cost and model complexity are reduced,and the modeling accuracy of the hysteresis loop is improved. 展开更多
关键词 sparse identification of nonlinear dynamics(SINDy) hysteresis loop relay operator sparse regression piezo actuator
在线阅读 下载PDF
High-Dimensional Regression on Sparse Grids Applied to Pricing Moving Window Asian Options
2
作者 Stefan Dirnstorfer Andreas J. Grau Rudi Zagst 《Open Journal of Statistics》 2013年第6期427-440,共14页
The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high... The pricing of moving window Asian option with an early exercise feature is considered a challenging problem in option pricing. The computational challenge lies in the unknown optimal exercise strategy and in the high dimensionality required for approximating the early exercise boundary. We use sparse grid basis functions in the Least Squares Monte Carlo approach to solve this “curse of dimensionality” problem. The resulting algorithm provides a general and convergent method for pricing moving window Asian options. The sparse grid technique presented in this paper can be generalized to pricing other high-dimensional, early-exercisable derivatives. 展开更多
关键词 sparse Grid regression LEAST-SQUARES Monte Carlo MOVING WINDOW Asian OPTION
在线阅读 下载PDF
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:14
3
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF)models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS)matrices which are commonly seen in various industrial applications.An LF model usually adopts iterativ... Latent factor(LF)models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS)matrices which are commonly seen in various industrial applications.An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost.Hence,determining how to accelerate the training process for LF models has become a significant issue.To address this,this work proposes a randomized latent factor(RLF)model.It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices,thereby greatly alleviating computational burden.It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models,RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices,which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
在线阅读 下载PDF
A novel sparse filtering approach based on time-frequency feature extraction and softmax regression for intelligent fault diagnosis under different speeds 被引量:6
4
作者 ZHANG Zhong-wei CHEN Huai-hai +1 位作者 LI Shun-ming WANG Jin-rui 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1607-1618,共12页
Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects... Modern agricultural mechanization has put forward higher requirements for the intelligent defect diagnosis.However,the fault features are usually learned and classified under all speeds without considering the effects of speed fluctuation.To overcome this deficiency,a novel intelligent defect detection framework based on time-frequency transformation is presented in this work.In the framework,the samples under one speed are employed for training sparse filtering model,and the remaining samples under different speeds are adopted for testing the effectiveness.Our proposed approach contains two stages:1)the time-frequency domain signals are acquired from the mechanical raw vibration data by the short time Fourier transform algorithm,and then the defect features are extracted from time-frequency domain signals by sparse filtering algorithm;2)different defect types are classified by the softmax regression using the defect features.The proposed approach can be employed to mine available fault characteristics adaptively and is an effective intelligent method for fault detection of agricultural equipment.The fault detection performances confirm that our approach not only owns strong ability for fault classification under different speeds,but also obtains higher identification accuracy than the other methods. 展开更多
关键词 intelligent fault diagnosis short time Fourier transform sparse filtering softmax regression
在线阅读 下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
5
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 high-dimensional and sparse matrix L1-norm L2 norm latent factor model recommender system smooth L1-norm
在线阅读 下载PDF
WEIGHTED LASSO ESTIMATES FOR SPARSE LOGISTIC REGRESSION:NON-ASYMPTOTIC PROPERTIES WITH MEASUREMENT ERRORS 被引量:2
6
作者 Huamei HUANG Yujing GAO +1 位作者 Huiming ZHANG Bo LI 《Acta Mathematica Scientia》 SCIE CSCD 2021年第1期207-230,共24页
For high-dimensional models with a focus on classification performance,the?1-penalized logistic regression is becoming important and popular.However,the Lasso estimates could be problematic when penalties of different... For high-dimensional models with a focus on classification performance,the?1-penalized logistic regression is becoming important and popular.However,the Lasso estimates could be problematic when penalties of different coefficients are all the same and not related to the data.We propose two types of weighted Lasso estimates,depending upon covariates determined by the Mc Diarmid inequality.Given sample size n and a dimension of covariates p,the finite sample behavior of our proposed method with a diverging number of predictors is illustrated by non-asymptotic oracle inequalities such as the?1-estimation error and the squared prediction error of the unknown parameters.We compare the performance of our method with that of former weighted estimates on simulated data,then apply it to do real data analysis. 展开更多
关键词 logistic regression weighted Lasso oracle inequalities high-dimensional statistics measurement error
在线阅读 下载PDF
Adaptive Sparse Group Variable Selection for a Robust Mixture Regression Model Based on Laplace Distribution
7
作者 Jiangtao Wang Wanzhou Ye 《Advances in Pure Mathematics》 2020年第1期39-55,共17页
The traditional estimation of Gaussian mixture model is sensitive to heavy-tailed errors;thus we propose a robust mixture regression model by assuming that the error terms follow a Laplace distribution in this article... The traditional estimation of Gaussian mixture model is sensitive to heavy-tailed errors;thus we propose a robust mixture regression model by assuming that the error terms follow a Laplace distribution in this article. And for the variable selection problem in our new robust mixture regression model, we introduce the adaptive sparse group Lasso penalty to achieve sparsity at both the group-level and within-group-level. As numerical experiments show, compared with other alternative methods, our method has better performances in variable selection and parameter estimation. Finally, we apply our proposed method to analyze NBA salary data during the period from 2018 to 2019. 展开更多
关键词 ROBUST MIXTURE regression LAPLACE Distribution ADAPTIVE sparse GROUP Lasso
在线阅读 下载PDF
Forward stagewise regression with multilevel memristor for sparse coding
8
作者 Chenxu Wu Yibai Xue +6 位作者 Han Bao Ling Yang Jiancong Li Jing Tian Shengguang Ren Yi Li Xiangshui Miao 《Journal of Semiconductors》 EI CAS CSCD 2023年第10期105-113,共9页
Sparse coding is a prevalent method for image inpainting and feature extraction,which can repair corrupted images or improve data processing efficiency,and has numerous applications in computer vision and signal proce... Sparse coding is a prevalent method for image inpainting and feature extraction,which can repair corrupted images or improve data processing efficiency,and has numerous applications in computer vision and signal processing.Recently,sev-eral memristor-based in-memory computing systems have been proposed to enhance the efficiency of sparse coding remark-ably.However,the variations and low precision of the devices will deteriorate the dictionary,causing inevitable degradation in the accuracy and reliability of the application.In this work,a digital-analog hybrid memristive sparse coding system is pro-posed utilizing a multilevel Pt/Al_(2)O_(3)/AlO_(x)/W memristor,which employs the forward stagewise regression algorithm:The approxi-mate cosine distance calculation is conducted in the analog part to speed up the computation,followed by high-precision coeffi-cient updates performed in the digital portion.We determine that four states of the aforementioned memristor are sufficient for the processing of natural images.Furthermore,through dynamic adjustment of the mapping ratio,the precision require-ment for the digit-to-analog converters can be reduced to 4 bits.Compared to the previous system,our system achieves higher image reconstruction quality of the 38 dB peak-signal-to-noise ratio.Moreover,in the context of image inpainting,images containing 50%missing pixels can be restored with a reconstruction error of 0.0424 root-mean-squared error. 展开更多
关键词 forward stagewise regression in-memory computing MEMRISTOR sparse coding
在线阅读 下载PDF
High-dimensional Teaching Data Clustering in Sparse Subspaces Based on Information Entropy
9
作者 Huiyan Liu 《IJLAI Transactions on Science and Engineering》 2025年第2期23-28,共6页
Due to the large scale and high dimension of teaching data,the using of traditional clustering algorithms has problems such as high computational complexity and low accuracy.Therefore,this paper proposes a weighted bl... Due to the large scale and high dimension of teaching data,the using of traditional clustering algorithms has problems such as high computational complexity and low accuracy.Therefore,this paper proposes a weighted block sparse subspace clustering algorithm based on information entropy.The introduction of information entropy weight and block diagonal constraints can obtain the prior probability that two pixels belong to the same category before the simulation experiment,thereby positively intervening that the solutions solved by the model tend to be the optimal approximate solutions of the block diagonal structure.It can enable the model to obtain the performance against noise and outliers,and thereby improving the discriminative ability of the model classification.The experimental results show that the average probability Rand index of the proposed method is 0.86,which is higher than that of other algorithms.The average information change index of the proposed method is 1.55,which is lower than that of other algorithms,proving its strong robustness.On different datasets,the misclassification rates of the design method are 1.2%and 0.9%respectively,which proves that its classification accuracy is relatively high.The proposed method has high reliability in processing highdimensional teaching data.It can play an important role in the field of educational data analysis and provide strong support for intelligent teaching. 展开更多
关键词 Intelligent teaching sparse subspace clustering information entropy high-dimensional
在线阅读 下载PDF
Dynamic Conditional Feature Screening:A High-Dimensional Feature Selection Method Based on Mutual Information and Regression Error
10
作者 Yi Zhao Guangming Deng 《Open Journal of Statistics》 2025年第2期199-242,共44页
Current high-dimensional feature screening methods still face significant challenges in handling mixed linear and nonlinear relationships,controlling redundant information,and improving model robustness.In this study,... Current high-dimensional feature screening methods still face significant challenges in handling mixed linear and nonlinear relationships,controlling redundant information,and improving model robustness.In this study,we propose a Dynamic Conditional Feature Screening(DCFS)method tailored for high-dimensional economic forecasting tasks.Our goal is to accurately identify key variables,enhance predictive performance,and provide both theoretical foundations and practical tools for macroeconomic modeling.The DCFS method constructs a comprehensive test statistic by integrating conditional mutual information with conditional regression error differences.By introducing a dynamic weighting mechanism,DCFS adaptively balances the linear and nonlinear contributions of features during the screening process.In addition,a dynamic thresholding mechanism is designed to effectively control the false discovery rate(FDR),thereby improving the stability and reliability of the screening results.On the theoretical front,we rigorously prove that the proposed method satisfies the sure screening property and rank consistency,ensuring accurate identification of the truly important feature set in high-dimensional settings.Simulation results demonstrate that under purely linear,purely nonlinear,and mixed dependency structures,DCFS consistently outperforms classical screening methods such as SIS,CSIS,and IG-SIS in terms of true positive rate(TPR),false discovery rate(FDR),and rank correlation.These results highlight the superior accuracy,robustness,and stability of our method.Furthermore,an empirical analysis based on the U.S.FRED-MD macroeconomic dataset confirms the practical value of DCFS in real-world forecasting tasks.The experimental results show that DCFS achieves lower prediction errors(RMSE and MAE)and higher R2 values in forecasting GDP growth.The selected key variables-including the Industrial Production Index(IP),Federal Funds Rate,Consumer Price Index(CPI),and Money Supply(M2)-possess clear economic interpretability,offering reliable support for economic forecasting and policy formulation. 展开更多
关键词 high-dimensional Feature Screening Conditional Mutual Information regression Error Difference Dynamic Weighting Dynamic Thresholding Macroeconomic Forecasting FRED-MD Dataset
在线阅读 下载PDF
Slope reliability analysis based on Monte Carlo simulation and sparse grid method 被引量:2
11
作者 WU Guoxue PENG Yijin +2 位作者 LIU Xuesong HU Tao WU Hao 《Global Geology》 2019年第3期152-158,共7页
In order to solve the problem of the reliability of slope engineering due to complex uncertainties, the Monte Carlo simulation method is adopted. Based on the characteristics of sparse grid, an interpolation algorithm... In order to solve the problem of the reliability of slope engineering due to complex uncertainties, the Monte Carlo simulation method is adopted. Based on the characteristics of sparse grid, an interpolation algorithm, which can be applied to high dimensional problems, is introduced. A surrogate model of high dimensional implicit function is established, which makes Monte Carlo method more adaptable. Finally, a reliability analysis method is proposed to evaluate the reliability of the slope engineering, and is applied in the Sau Mau Ping slope project in Hong Kong. The reliability analysis method has great theoretical and practical significance for engineering quality evaluation and natural disaster assessment. 展开更多
关键词 SLOPE reliability ANALYSIS high-dimension sparse GRID MONTE Carlo simulation
在线阅读 下载PDF
Improved Scheme for Fast Approximation to Least Squares Support Vector Regression
12
作者 张宇宸 赵永平 +3 位作者 宋成俊 侯宽新 脱金奎 叶小军 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期413-419,共7页
The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FS... The solution of normal least squares support vector regression(LSSVR)is lack of sparseness,which limits the real-time and hampers the wide applications to a certain degree.To overcome this obstacle,a scheme,named I2FSA-LSSVR,is proposed.Compared with the previously approximate algorithms,it not only adopts the partial reduction strategy but considers the influence between the previously selected support vectors and the willselected support vector during the process of computing the supporting weights.As a result,I2FSA-LSSVR reduces the number of support vectors and enhances the real-time.To confirm the feasibility and effectiveness of the proposed algorithm,experiments on benchmark data sets are conducted,whose results support the presented I2FSA-LSSVR. 展开更多
关键词 support vector regression kernel method least squares sparseNESS
在线阅读 下载PDF
MODIS image super-resolution via learned topic dictionaries and regression matrices
13
作者 Deng Zuo Randi Fu +1 位作者 Wei Jin Caifen He 《光电工程》 CAS CSCD 北大核心 2017年第10期957-965,共9页
Moderate resolution imaging spectroradiometer(MODIS)imaging has various applications in the field of ground monitoring,cloud classification and meteorological research.However,the limitations of the sensors and extern... Moderate resolution imaging spectroradiometer(MODIS)imaging has various applications in the field of ground monitoring,cloud classification and meteorological research.However,the limitations of the sensors and external disturbance make the resolution of image still limited in a certain level.The goal of this paper is to use a single image super-resolution(SISR)method to predict a high-resolution(HR)MODIS image from a single low-resolution(LR)input.Recently,although the method based on sparse representation has tackled the ill-posed problem effectively,two fatal issues have been ignored.First,many methods ignore the relationships among patches,resulting in some unfaithful output.Second,the high computational complexity of sparse coding using l_1 norm is needed in reconstruction stage.In this work,we discover the semantic relationships among LR patches and the corresponding HR patches and group the documents with similar semantic into topics by probabilistic Latent Semantic Analysis(p LSA).Then,we can learn dual dictionaries for each topic in the low-resolution(LR)patch space and high-resolution(HR)patch space and also pre-compute corresponding regression matrices for dictionary pairs.Finally,for the test image,we infer locally which topic it corresponds to and adaptive to select the regression matrix to reconstruct HR image by semantic relationships.Our method discovered the relationships among patches and pre-computed the regression matrices for topics.Therefore,our method can greatly reduce the artifacts and get some speed-up in the reconstruction phase.Experiment manifests that our method performs MODIS image super-resolution effectively,results in higher PSNR,reconstructs faster,and gets better visual quality than some current state-of-art methods. 展开更多
关键词 MODIS SUPER-RESOLUTION sparse representation sparse coding regression matrix
在线阅读 下载PDF
A Review on High-Dimensional Frequentist Model Averaging
14
作者 Peipei Fu Juming Pan 《Open Journal of Statistics》 2018年第3期513-518,共6页
Model averaging has attracted increasing attention in recent years for the analysis of high-dimensional data. By weighting several competing statistical models suitably, model averaging attempts to achieve stable and ... Model averaging has attracted increasing attention in recent years for the analysis of high-dimensional data. By weighting several competing statistical models suitably, model averaging attempts to achieve stable and improved prediction. To obtain a better understanding of the available model averaging methods, their properties and the relationships between them, this paper is devoted to make a review on some recent progresses in high-dimensional model averaging from the frequentist perspective. Some future research topics are also discussed. 展开更多
关键词 Model AVERAGING high-dimensional regression MODELS STABLE PREDICTION
暂未订购
L1/2 -Regularized Quantile Method for Sparse Phase Retrieval
15
作者 Si Shen Jiayao Xiang +1 位作者 Huijuan Lv Ailing Yan 《Open Journal of Applied Sciences》 CAS 2022年第12期2135-2151,共17页
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel metho... The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise. 展开更多
关键词 sparse Phase Retrieval Nonconvex Optimization Alternating Direction Method of Multipliers Quantile regression Model ROBUSTNESS
在线阅读 下载PDF
Single Image Super-Resolution by Clustered Sparse Representation and Adaptive Patch Aggregation
16
作者 黄伟 肖亮 +2 位作者 韦志辉 费选 王凯 《China Communications》 SCIE CSCD 2013年第5期50-61,共12页
A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images,... A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images, and divide these patch pairs into different groups by K-means clustering. Then, we learn an over-complete sub-dictionary pair offline from corresponding group patch pairs. For a given low-resolution patch, we adaptively select one sub-dictionary to reconstruct the high resolution patch online. In addition, non-local self-similarity and steering kernel regression constraints are integrated into patch aggregation to improve the quality of the recovered images. Experiments show that the proposed method is able to realize state-of-the-art performance in terms of both objective evaluation and visual perception. 展开更多
关键词 super-resolution sparse representation non-local means steering kernel regression patch aggregation
在线阅读 下载PDF
Variable Selection for Distributed Sparse Regression Under Memory Constraints
17
作者 Haofeng Wang Xuejun Jiang +1 位作者 Min Zhou Jiancheng Jiang 《Communications in Mathematics and Statistics》 SCIE CSCD 2024年第2期307-338,共32页
This paper studies variable selection using the penalized likelihood method for dis-tributed sparse regression with large sample size n under a limited memory constraint.This is a much needed research problem to be so... This paper studies variable selection using the penalized likelihood method for dis-tributed sparse regression with large sample size n under a limited memory constraint.This is a much needed research problem to be solved in the big data era.A naive divide-and-conquer method solving this problem is to split the whole data into N parts and run each part on one of N machines,aggregate the results from all machines via averaging,andfinally obtain the selected variables.However,it tends to select more noise variables,and the false discovery rate may not be well controlled.We improve it by a special designed weighted average in aggregation.Although the alternating direction method of multiplier can be used to deal with massive data in the literature,our proposed method reduces the computational burden a lot and performs better by mean square error in most cases.Theoretically,we establish asymptotic properties of the resulting estimators for the likelihood models with a diverging number of parame-ters.Under some regularity conditions,we establish oracle properties in the sense that our distributed estimator shares the same asymptotic efficiency as the estimator based on the full sample.Computationally,a distributed penalized likelihood algorithm is proposed to refine the results in the context of general likelihoods.Furthermore,the proposed method is evaluated by simulations and a real example. 展开更多
关键词 Variable selection Distributed sparse regression Memory constraints Distributed penalized likelihood algorithm
原文传递
基于变分稀疏高斯过程的多机器人协同感知与围捕
18
作者 曹凯 陈阳泉 +3 位作者 魏云博 刘志 陈超波 高嵩 《自动化学报》 北大核心 2025年第4期778-791,共14页
针对未知环境下的多机器人环境感知和围捕问题,提出一种基于变分稀疏高斯过程回归的分布式感知与围捕算法.考虑到传统高斯过程回归不适合处理大量数据的问题,在这项工作中,首先考虑障碍物的影响,以引入分离超平面的质心维诺划分算法为... 针对未知环境下的多机器人环境感知和围捕问题,提出一种基于变分稀疏高斯过程回归的分布式感知与围捕算法.考虑到传统高斯过程回归不适合处理大量数据的问题,在这项工作中,首先考虑障碍物的影响,以引入分离超平面的质心维诺划分算法为机器人动态规划任务区域;其次,利用多机器人在任务区域中的移动探索获取环境信息,并通过变分自由方法来近似模型的后验分布,完成对未知环境的感知;最后,基于粒子群优算法为围捕机器人动态分配围捕点,实现多机器人的全方位均匀围捕.通过仿真实验证明,该算法能够适用于单源、多源以及动态源的围捕,且能够在保证多机器人编队安全性的同时,实现较高的迭代速度,最终成功实现均匀围捕. 展开更多
关键词 多机器人 质心维诺划分 变分稀疏高斯过程回归 围捕 协同感知
在线阅读 下载PDF
基于最小角回归的稀疏辨识与优化PID控制
19
作者 刘艳君 武禹辰 +1 位作者 陈晶 丁锋 《系统工程与电子技术》 北大核心 2025年第8期2706-2714,共9页
针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维... 针对过程复杂且结构未知的对象,在保证模型有效性的前提下,根据数据信息构建简单模型来简化控制器的求解是亟待解决的问题。以受控自回归模型为例,提出一种基于修正最小角回归算法的稀疏辨识方法。首先将系统模型转化为过参数化的高维稀疏模型,然后将最小角回归算法用于稀疏系统辨识,并提出绝对角度停止准则,使算法经过少量的迭代即可获得模型的稀疏参数估计,并同时获得有效的时滞和阶次估计。结合辨识得到的受控自回归模型,引入一种基于指定相位点频率和增益的比例-积分-微分(proportional integral derivative,PID)控制器。数值仿真和平衡机器人的姿态控制仿真表明,该稀疏辨识算法在低数据量下具有较高的辨识精度,建立的模型具有较好的泛化性能,控制器具有良好的控制效果。 展开更多
关键词 最小角回归 稀疏系统辨识 时滞阶次联合估计 停止准则 优化PID控制
在线阅读 下载PDF
函数包络模型的分位数回归算法
20
作者 陈波 崔文泉 《计算机系统应用》 2025年第11期262-269,共8页
函数型分位数回归在许多实际应用中表现良好,特别是在处理具有复杂依赖结构的数据时,常考虑的是标量响应变量与函数型预测变量之间的条件分位数关系.对于函数型数据的回归模型,已知的算法是通过函数主成分基对斜率函数进行近似展开,在... 函数型分位数回归在许多实际应用中表现良好,特别是在处理具有复杂依赖结构的数据时,常考虑的是标量响应变量与函数型预测变量之间的条件分位数关系.对于函数型数据的回归模型,已知的算法是通过函数主成分基对斜率函数进行近似展开,在此基础上再进行估计,本文提出了一种适用于函数型分位数回归,能够提高估计效率,减少预测误差的算法.该算法通过引入函数特征稀疏包络空间,将用于分位数回归的函数预测变量信息集中到一个更小的空间,降低了函数型分位数回归模型的复杂度,然后将集中信息后的分位数回归模型用广义矩估计方法进行估计.实验结果表明,本文算法在公开的函数型数据集CanadianWeather和wheat上优于对比算法. 展开更多
关键词 函数型数据 分位数回归 特征稀疏包络 广义矩估计方法 均方预测误差
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部