期刊文献+

L<sub>1/2 </sub>-Regularized Quantile Method for Sparse Phase Retrieval

L<sub>1/2 </sub>-Regularized Quantile Method for Sparse Phase Retrieval
在线阅读 下载PDF
导出
摘要 The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise. The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.
作者 Si Shen Jiayao Xiang Huijuan Lv Ailing Yan Si Shen;Jiayao Xiang;Huijuan Lv;Ailing Yan(College of Science, Minzu University of China, Beijing, China;School of Science, Hebei University of Technology, Tianjin, China;School of Insurance and Economics, University of International Business and Economics, Beijing, China)
出处 《Open Journal of Applied Sciences》 CAS 2022年第12期2135-2151,共17页 应用科学(英文)
关键词 Sparse Phase Retrieval Nonconvex Optimization Alternating Direction Method of Multipliers Quantile Regression Model ROBUSTNESS Sparse Phase Retrieval Nonconvex Optimization Alternating Direction Method of Multipliers Quantile Regression Model Robustness
  • 相关文献

参考文献2

二级参考文献47

  • 1Natarajan B K. Sparse approximate solutions to linear sys- tems. SIAM Journal oll Computing, 1995, 24(2): 227-234.
  • 2Chen S, Donoho D L, Saunders M A. Atomic decomposi- tion by basis pursuit. SIAM Journal on Scientit]c Comput- ing, 1998, 20(1): 33-61.
  • 3Candes E, Wakin M, Boyd S. Enhancing sparsity by reweighted L1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5): 877--905.
  • 4Chartrand R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 2007, 14(I0): 707--710.
  • 5Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 2008, 24(3): 1-14.
  • 6Donoho D L. Neighborly polytopes and the sparse solu- tion of underdetermined linear equations [Online], available: http: //www-stat.stanford.edu/ donoho/ Reports/ 2005/ NPaSSULE-01-28-05.pdf, November 8, 2011.
  • 7Donoho D L. High-dimensional centrally symmetric poly- topes with neighborliness proportional to dimension. Dis- crete and Computational Geometry, 2006, 35(4): 617-652.
  • 8Donoho D L, Stodden V. Breakdown point of model selection when the number of variables exceeds the number of observa- tions. In: Proceedings of the International Joint Conference on Neural Networks. Vancouver, USA: IEEE, 2006. 1916- 1921.
  • 9Xu Z B, Zhang H, Wang Y, Chang X Y, Yong L. L1/2 reg- ularization. Science in China Series F: Information Sciences, 2010, 53(6): 1159-1169.
  • 10Chen X, Xu F M, Ye Y. Lower bound theory of nonzero entries in solutions of L2-Lp minimization. SIAM Journal on Scientific Computing, 2010, 32(5): 2832-2852.

共引文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部