摘要
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.
The sparse phase retrieval aims to recover the sparse signal from quadratic measurements. However, the measurements are often affected by outliers and asymmetric distribution noise. This paper introduces a novel method that combines the quantile regression and the L<sub>1/2</sub>-regularizer. It is a non-convex, non-smooth, non-Lipschitz optimization problem. We propose an efficient algorithm based on the Alternating Direction Methods of Multiplier (ADMM) to solve the corresponding optimization problem. Numerous numerical experiments show that this method can recover sparse signals with fewer measurements and is robust to dense bounded noise and Laplace noise.
作者
Si Shen
Jiayao Xiang
Huijuan Lv
Ailing Yan
Si Shen;Jiayao Xiang;Huijuan Lv;Ailing Yan(College of Science, Minzu University of China, Beijing, China;School of Science, Hebei University of Technology, Tianjin, China;School of Insurance and Economics, University of International Business and Economics, Beijing, China)