We proposed and demonstrated the ultra-compact 1310/1550 nm wavelength multiplexer/demultiplexer assisted by subwavelength grating(SWG)using particle swarm optimization(PSO)algorithm in silicon-on-insulator(SOI)platfo...We proposed and demonstrated the ultra-compact 1310/1550 nm wavelength multiplexer/demultiplexer assisted by subwavelength grating(SWG)using particle swarm optimization(PSO)algorithm in silicon-on-insulator(SOI)platform.Through the self-imaging effect of multimode interference(MMI)coupler,the demultiplexing function for 1310 nm and 1550 nm wavelengths is implemented.After that,three parallel SWG-based slots are inserted into the MMI section so that the effective refractive index of the modes can be engineered and thus the beat length can be adjusted.Importantly,these three SWG slots significantly reduce the length of the device,which is much shorter than the length of traditional MMI-based wavelength demultiplexers.Ultimately,by using the PSO algorithm,the equivalent refractive index and width of the SWG in a certain range are optimized to achieve the best performance of the wavelength demultiplexer.It has been verified that the device footprint is only 2×30.68μm^(2),and 1 dB bandwidths of larger than 120 nm are acquired at 1310 nm and 1550 nm wavelengths.Meanwhile,the transmitted spectrum shows that the insertion loss(IL)values are below 0.47 dB at both wavelengths when the extinction ratio(ER)values are above 12.65 dB.This inverse design approach has been proved to be efficient in increasing bandwidth and reducing device length.展开更多
The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-con...The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.展开更多
A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antiref...A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.展开更多
Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion...Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.展开更多
A novel dynamic optical add-drop multiplexer(OADM) scheme using tunable sampled fiber Bragg gratings(SFBG) by Vernier effect is firstly proposed. In this scheme, broad wavelength tuning range is achieved by only sligh...A novel dynamic optical add-drop multiplexer(OADM) scheme using tunable sampled fiber Bragg gratings(SFBG) by Vernier effect is firstly proposed. In this scheme, broad wavelength tuning range is achieved by only slightly adjusting the SFBG, the wavelength tuning of OADM will be faster than traditional dynamic OADM.展开更多
This paper focuses on the investigation of modal characteristics and sensing properties of long period grating photonic crystal fibers (LPG-PCFs). An improved effective index method is employed with an objective to st...This paper focuses on the investigation of modal characteristics and sensing properties of long period grating photonic crystal fibers (LPG-PCFs). An improved effective index method is employed with an objective to study its limitations for various designs of LPG-PCFs. Results so obtained with the above method are compared with the corresponding values of multiple multipole (MMP) method results which points the range of validity and applicability of the improved effective index method to LPG-PCFs. It is shown that this method is excellent when the surrounding media is assumed to be air. However, it becomes less accurate when the fiber is immersed into a liquid with a refractive index close to that of the cladding.展开更多
We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gas...We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.展开更多
We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a s...We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a standing wave coupling field, and different depths of the phase modulation can disperse the diffraction light into different orders. When the phase modulation depth is approximated to the orders of π, 2π and 3π, the first-, second- and third-order diffraction intensity reach the maximum, respectively. Thus we can take advantage of the phase modulation to control the probe light dispersing into the required high orders.展开更多
The multiplexing ability of a novel multiplexing fiber Bragg grating (FBG) method based on Optical Time Domain Reflecto meter (OTDR) and Time Division Multiplexing TDM technologies has been theoretically analyzed ...The multiplexing ability of a novel multiplexing fiber Bragg grating (FBG) method based on Optical Time Domain Reflecto meter (OTDR) and Time Division Multiplexing TDM technologies has been theoretically analyzed and studied. This method permits the interrogation of hundreds of identical FBGs with low reflectivity in a single fiber, making the FBG sensors more applicable in the aerospace health monitoring engineering. The analysis shows that the multiplexing ability can be greatly improved if the FBG reflectivity is sufficiently low. And hence, an inexpensive large-scale distributed sensing system based on this method can be realized, When evaluating the multiplexing ability of this system, we propose for the first time that the interference effect of multi-reflections among FBGs should be taken into consideration.展开更多
Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical wa...Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.展开更多
One of the most important research task in reservoir engineering now is to resolve the fine thin layer. What are the characteristics of the fine thin layer? This paper gives the answer in frequency domain. The frequen...One of the most important research task in reservoir engineering now is to resolve the fine thin layer. What are the characteristics of the fine thin layer? This paper gives the answer in frequency domain. The frequency feature of fine thin layer set obtained is grating. The frequence effects of rhythmic thin layer, on the other hand, is different from those of graded thin layer; the grating effect of fine layer is affected by several factors, but the thickness and its inner layer number are the most predominant factors over others affecting grating effect.展开更多
Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a die...Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips.展开更多
A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal(NLC) was presented.An oblique incidence beam was used to record the thin asym...A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal(NLC) was presented.An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating.The diffraction efficiency we achieved is more than 40%,exceeding the theoretical limit for symmetric profile gratings.Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC.Finally,physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented,based on the photo-refractive-like(PR-like) effect.展开更多
基金supported by the National Natural Science Foundation of China(No.61505160)the Innovation Capability Support Program of Shaanxi(No.2018KJXX-042)+2 种基金the Natural Science Basic Research Program of Shaanxi(No.2019JM-084)the State Key Laboratory of Transient Optics and Photonics(No.SKLST202108)the Graduate Innovation and Practical Ability Training Project of Xi’an Shiyou University(No.YCS22213190)。
文摘We proposed and demonstrated the ultra-compact 1310/1550 nm wavelength multiplexer/demultiplexer assisted by subwavelength grating(SWG)using particle swarm optimization(PSO)algorithm in silicon-on-insulator(SOI)platform.Through the self-imaging effect of multimode interference(MMI)coupler,the demultiplexing function for 1310 nm and 1550 nm wavelengths is implemented.After that,three parallel SWG-based slots are inserted into the MMI section so that the effective refractive index of the modes can be engineered and thus the beat length can be adjusted.Importantly,these three SWG slots significantly reduce the length of the device,which is much shorter than the length of traditional MMI-based wavelength demultiplexers.Ultimately,by using the PSO algorithm,the equivalent refractive index and width of the SWG in a certain range are optimized to achieve the best performance of the wavelength demultiplexer.It has been verified that the device footprint is only 2×30.68μm^(2),and 1 dB bandwidths of larger than 120 nm are acquired at 1310 nm and 1550 nm wavelengths.Meanwhile,the transmitted spectrum shows that the insertion loss(IL)values are below 0.47 dB at both wavelengths when the extinction ratio(ER)values are above 12.65 dB.This inverse design approach has been proved to be efficient in increasing bandwidth and reducing device length.
基金Project supported by the National Natural Science Foundation of China(Grant No.61007040)
文摘The effect of irradiation on the strain sensitivity coefficient of strain sensing fiber Bragg gratings (FBGs) has been investigated through experiments. FBGs were fabricated in single mode fibers with 3 tool% Ge-concentration in the core and with a H2-1oading treatment. In experiments, the FBGs were subjected to y-radiation exposures using a Co6~ source at a dose-rate of 25 Gy/min up to a total dose of 10.5 kGy. The GeO defect in fiber absorbs photons to form a GeE' defect; the interaction with H2 is a probable reason for the y-radiation sensitivity of gratings written in hydrogen loaded fibres, The effect mechanism of radiation on the strain sensitivity coefficient is similar to that of radiation on the temperature sensitivity coefficient. Radiation affects the effective index neff, which results in the change of the thermo-optic coefficient and the strain-optic coefficient. Irradiation can change the strain sensitivity coefficient of FBGs by 1.48%-2.71%, as well as changing the Bragg wavelength shift (BWS) by 22 pm-25 pm under a total dose of 10.5 kGy. Our research demonstrates that the effect of irradiation on the strain sensitivity coefficient of FBG is small and that strain sensing FBGs can work well in the radiation environment.
基金Project supported by Science Foundation of the Chongqing Committee of Education,China (Grant No KJ071205)
文摘A novel optimal design of sub-wavelength metal rectangular gratings for the polarizing beam splitter (PBS) is proposed. The method is based on effective medium theory and the method of designing single layer antireflection coating. The polarization performance of PBS is discussed by rigorous couple-wave analysis (RCWA) method at a wavelength of 1550 nm. The result shows that sub-wavelength metal rectangular grating is characterized by a high reflectivity, like metal films for TE polarization, and high transmissivity, like dielectric films for TM polarization. The optimal design accords well with the results simulated by RCWA method.
基金supported by National Natural Science Foundation of China(No.61671431)
文摘Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation.
文摘A novel dynamic optical add-drop multiplexer(OADM) scheme using tunable sampled fiber Bragg gratings(SFBG) by Vernier effect is firstly proposed. In this scheme, broad wavelength tuning range is achieved by only slightly adjusting the SFBG, the wavelength tuning of OADM will be faster than traditional dynamic OADM.
文摘This paper focuses on the investigation of modal characteristics and sensing properties of long period grating photonic crystal fibers (LPG-PCFs). An improved effective index method is employed with an objective to study its limitations for various designs of LPG-PCFs. Results so obtained with the above method are compared with the corresponding values of multiple multipole (MMP) method results which points the range of validity and applicability of the improved effective index method to LPG-PCFs. It is shown that this method is excellent when the surrounding media is assumed to be air. However, it becomes less accurate when the fiber is immersed into a liquid with a refractive index close to that of the cladding.
基金Supported by the State Key Development Program for Basic Research of China under Grant No 2016YFA0301501the National Natural Science Foundation of China under Grant Nos 11504328,61475007,11334001 and 91336103
文摘We report the experimental observation of two-dimensional Talbot effect when a resonance plane wave interacts with a two-dimensional atomic density grating generated by standing wave manipulation of ultracold Bose gases. Clear self-images of the grating and sub-images with reversed phase or fractal patterns are observed. By calculating the autocorrelation functions of the images, the behavior of periodic Talbot images is studied. The Talbot effect with two-dimensional atomic density grating expands the applications of the Talbot effect in a wide variety of research fields.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274112 and 11474092the Key Project of Shanghai Municipal Education Commission under Grant No 14ZZ056+1 种基金the Shanghai Natural Science Fund Project under Grant No14ZR1410300the Key Research Project of Henan Province Education Department under Grant No 13A140818
文摘We theoretically investigate the phenomena of electromagnetically induced grating in an M-type five-level atomic system. It is found that a weak field can be effectively diffracted into high-order directions using a standing wave coupling field, and different depths of the phase modulation can disperse the diffraction light into different orders. When the phase modulation depth is approximated to the orders of π, 2π and 3π, the first-, second- and third-order diffraction intensity reach the maximum, respectively. Thus we can take advantage of the phase modulation to control the probe light dispersing into the required high orders.
基金Foundation item: National Natural Science Foundation of China (10376001)
文摘The multiplexing ability of a novel multiplexing fiber Bragg grating (FBG) method based on Optical Time Domain Reflecto meter (OTDR) and Time Division Multiplexing TDM technologies has been theoretically analyzed and studied. This method permits the interrogation of hundreds of identical FBGs with low reflectivity in a single fiber, making the FBG sensors more applicable in the aerospace health monitoring engineering. The analysis shows that the multiplexing ability can be greatly improved if the FBG reflectivity is sufficiently low. And hence, an inexpensive large-scale distributed sensing system based on this method can be realized, When evaluating the multiplexing ability of this system, we propose for the first time that the interference effect of multi-reflections among FBGs should be taken into consideration.
基金supported by the National Natural Science Foundation of China under Grant No. 60671027the Application Basis Research Foundation of Sichuan Province under Grant No. 07JY029-089.
文摘Magneto-optic fiber Bragg gratings (MFBG) based on magneto-optic materials have a lot of potential applications for sensing and optical signal processing. The transmission and reflection spectra of guided optical waves in the MFBG are investigated. According to the sensitivity of MFBG spectral lines to the magneto-optic coupling intensity varying with applied magnetic field, a novel magnetic field sensor of high-resolution up to 0.01 nm/(kA/m) is predicted.
文摘One of the most important research task in reservoir engineering now is to resolve the fine thin layer. What are the characteristics of the fine thin layer? This paper gives the answer in frequency domain. The frequency feature of fine thin layer set obtained is grating. The frequence effects of rhythmic thin layer, on the other hand, is different from those of graded thin layer; the grating effect of fine layer is affected by several factors, but the thickness and its inner layer number are the most predominant factors over others affecting grating effect.
基金the National Natural Science Foundation of China(Nos.12004353,11975214,11991071,11905202,12174350)Key Laboratory Foundation of The Sciences and Technology on Plasma Physics Laboratory(No.6142A04200103)Independent scientific research(No.JCKYS2021212011).
文摘Particle accelerators are indispensable tools in both science and industry.However,the size and cost of conventional RF accelerators limits the utility and scope of this technology.Recent research has shown that a dielectric laser accelerator(DLA)made of dielectric structures and driven at optical frequencies can generate particle beams with energies ranging from MeV to GeV at the tabletop level.To design DLA structures with a high acceleration gradient,we demonstrate topology optimization,which is a method used to optimize the material distribution in a specific area based on given load conditions,constraints,and performance indicators.To demonstrate the effectiveness of this approach,we propose two schemes and design several acceleration structures based on them.The optimization results demonstrate that the proposed method can be applied to structure optimization for on-chip integrated laser accelerators,producing manufacturable structures with significantly improved performance compared with previous size or shape optimization methods.These results provide new physical approaches to explore ultrafast dynamics in matter,with important implications for future laser particle accelerators based on photonic chips.
基金Project supported by the Science and Technology Programs of the Educational Committee of Heilongjiang Province,China(Grant No.12541730)the National Natural Science Foundation of China(Grant No.61405057)
文摘A new scheme for recording a dynamic phase grating with an asymmetric profile in C60-doped homeotropically aligned nematic liquid crystal(NLC) was presented.An oblique incidence beam was used to record the thin asymmetric dynamic phase holographic grating.The diffraction efficiency we achieved is more than 40%,exceeding the theoretical limit for symmetric profile gratings.Both facts can be explained by assuming that a grating with an asymmetric saw-tooth profile is formed in the NLC.Finally,physical mechanism and mathematical model for characterizing the asymmetric phase holographic grating were presented,based on the photo-refractive-like(PR-like) effect.