To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the...To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the goaf efectively,a new type of high-water material as a roadside flling body for GER technology with double roadways was proposed.The instability analysis and control technology of GER with double roadways by flling high-water material into a gently inclined coal seam were studied.The basic mechanical properties of the new high-water material were investigated through laboratory experiments,and their main advantages were identifed.The reasonable width of the roadside flling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations.The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations,and the failure range of GER by flling with high-water material was revealed.Based on this,a coupling control technology of anchor cables and bolts+single props+metal mesh+anchor bolts is proposed.Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock,the results demonstrate that GER with double roadways by flling with a 1.8-m-wide high-water material has a good control efect.The above research will play an active role in promoting the application of high-water materials in GER roadside flling.展开更多
According to the structural characteristics of gently inclined thin layer rock mass in which lots of weak interlayer existed,the concept of gently inclined thin layer weakness structure was proposed.If single-borehole...According to the structural characteristics of gently inclined thin layer rock mass in which lots of weak interlayer existed,the concept of gently inclined thin layer weakness structure was proposed.If single-borehole measuring method of the acoustic along the conventional arrangement mode was used in measuring the broken rock zone in this structure,the change of the relationship curves (Vp-L) between acoustic p-wave velocity (Vp) and borehole depth (L) would present the irregular feature due to the mechanical characteristics of layered rock mass and harmful effects of weak interlayers,and the scope of broken rock zone couldn't be defined quickly.Based on the analysis of the me- chanical characteristics of layered rock mass,the propagation rule of acoustic and distri- butions characteristics of plastic zone and slip zone in layered rock mass,new arrange- ment mode of acoustic measuring boreholes for broken rock zone in gently inclined thin layer weakness structure was proposed.Namely,the measuring boreholes in two sides were parallel to the strata,the measuring boreholes in the roof and floor perpendicular to the strata.Besides the controlling depth of the measuring boreholes in the scope of the large plastic zones or the large slip zones should be increased.Engineering example showed that new acoustic measuring boreholes arrangement mode had the better appli- cability and could determine the scope of the broken rock zone in the gently inclined thin layer weakness structure quickly.展开更多
Ensuring the stability of the surrounding rock mass is of great importance during the construction of a large underground powerhouse.The presence of unfavorable structural planes within the rock mass,such as faults,ca...Ensuring the stability of the surrounding rock mass is of great importance during the construction of a large underground powerhouse.The presence of unfavorable structural planes within the rock mass,such as faults,can lead to substantial deformation and subsequent collapse.A series of in situ experiments and discrete element numerical simulations have been conducted to gain insight into the progressive failure behavior and deformation response of rocks in relation to controlled collapse scenarios involving gently inclined faults.First,the unloading damage evolution process of the surrounding rock mass is characterized by microscopic analysis using microseismic(MS)data.Second,the moment tensor inversion method is used to elucidate the temporal distribution of MS event fracture types in the surrounding rock mass.During the development stage of the collapse,numerous tensile fracture events occur,while a few shear fractures corresponding to structural plane dislocation precede their occurrence.The use of the digital panoramic borehole camera,acoustic wave test,and numerical simulation revealed that gently inclined faults and deep cracks at a certain depth from the cavern periphery are the primary factors contributing to rock collapse.These results provide a valuable case study that can help anticipate and mitigate fault-slip collapse incidents while providing practical insights for underground cave excavation.展开更多
A good friend is like a gentle breeze that blows away your gloomy mood,a beam of sunshine that warms your heart,and a guiding light that accompanies you on your journey.A true friend brings you comfort,joy,and encoura...A good friend is like a gentle breeze that blows away your gloomy mood,a beam of sunshine that warms your heart,and a guiding light that accompanies you on your journey.A true friend brings you comfort,joy,and encouragement.展开更多
This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a ...This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.展开更多
Maintaining stable high temperatures under pressure remains a challenge in high-pressure,high-temperature experiments using multi-anvil presses(MAPs).Temperature fluctuations exceeding 10℃ at high pressures are commo...Maintaining stable high temperatures under pressure remains a challenge in high-pressure,high-temperature experiments using multi-anvil presses(MAPs).Temperature fluctuations exceeding 10℃ at high pressures are common and particularly problematic with LaCrO_(3) heaters,which can experience significant power fluctuations and even failure due to substantial resistance changes—an issue conventional thyristorcontrolled heating systems cannot effectively manage.To address this limitation,we have developed the Multi-Anvil Stable Temperature controller(MASTer),a high-performance heating system optimized for MAP experiments.MASTer enables precise,high-speed measurement of heating parameters and power output control,incorporating a gentle regulation strategy to enhance stability.It ensures consistent heating across various heater types,including LaCrO_(3),with power fluctuations limited to±0.1 W and temperature fluctuations to within±2℃ in most cases.The design,operating principles,user interface,functionality,and performance of the heating system are discussed in detail.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074296,52004286)the China Postdoctoral Science Foundation(Nos.2020T130701,2019M650895)the Fundamental Research Funds for the Central Universities(Nos.2022YJSNY18,2022XJNY02)。
文摘To ameliorate the defects of insufcient support resistance of traditional roadside flling bodies for gob-side entry retaining(GER),overcome the inability to adapt to the deformation of surrounding rock,and isolate the goaf efectively,a new type of high-water material as a roadside flling body for GER technology with double roadways was proposed.The instability analysis and control technology of GER with double roadways by flling high-water material into a gently inclined coal seam were studied.The basic mechanical properties of the new high-water material were investigated through laboratory experiments,and their main advantages were identifed.The reasonable width of the roadside flling wall of a high-water material was obtained by combining ground pressure observation and theoretical calculations.The distribution characteristics of the stress and plastic zone of surrounding rock of GER after being stabilized by the disturbance of the working face were studied using numerical simulations,and the failure range of GER by flling with high-water material was revealed.Based on this,a coupling control technology of anchor cables and bolts+single props+metal mesh+anchor bolts is proposed.Through the coupling methods of arranging borehole peeping and observing the convergences of surrounding rock,the results demonstrate that GER with double roadways by flling with a 1.8-m-wide high-water material has a good control efect.The above research will play an active role in promoting the application of high-water materials in GER roadside flling.
基金the National Natural Science Foundation of China(50490274)National Key Project of Scientific and Technical Supporting Programs of China(2006BAB02A02)Guangxi University Research Foundation(X061068)
文摘According to the structural characteristics of gently inclined thin layer rock mass in which lots of weak interlayer existed,the concept of gently inclined thin layer weakness structure was proposed.If single-borehole measuring method of the acoustic along the conventional arrangement mode was used in measuring the broken rock zone in this structure,the change of the relationship curves (Vp-L) between acoustic p-wave velocity (Vp) and borehole depth (L) would present the irregular feature due to the mechanical characteristics of layered rock mass and harmful effects of weak interlayers,and the scope of broken rock zone couldn't be defined quickly.Based on the analysis of the me- chanical characteristics of layered rock mass,the propagation rule of acoustic and distri- butions characteristics of plastic zone and slip zone in layered rock mass,new arrange- ment mode of acoustic measuring boreholes for broken rock zone in gently inclined thin layer weakness structure was proposed.Namely,the measuring boreholes in two sides were parallel to the strata,the measuring boreholes in the roof and floor perpendicular to the strata.Besides the controlling depth of the measuring boreholes in the scope of the large plastic zones or the large slip zones should be increased.Engineering example showed that new acoustic measuring boreholes arrangement mode had the better appli- cability and could determine the scope of the broken rock zone in the gently inclined thin layer weakness structure quickly.
基金funding support from the National Natural Science Foundation of China(Grant Nos.U23A2060,42177143,and 42277461).
文摘Ensuring the stability of the surrounding rock mass is of great importance during the construction of a large underground powerhouse.The presence of unfavorable structural planes within the rock mass,such as faults,can lead to substantial deformation and subsequent collapse.A series of in situ experiments and discrete element numerical simulations have been conducted to gain insight into the progressive failure behavior and deformation response of rocks in relation to controlled collapse scenarios involving gently inclined faults.First,the unloading damage evolution process of the surrounding rock mass is characterized by microscopic analysis using microseismic(MS)data.Second,the moment tensor inversion method is used to elucidate the temporal distribution of MS event fracture types in the surrounding rock mass.During the development stage of the collapse,numerous tensile fracture events occur,while a few shear fractures corresponding to structural plane dislocation precede their occurrence.The use of the digital panoramic borehole camera,acoustic wave test,and numerical simulation revealed that gently inclined faults and deep cracks at a certain depth from the cavern periphery are the primary factors contributing to rock collapse.These results provide a valuable case study that can help anticipate and mitigate fault-slip collapse incidents while providing practical insights for underground cave excavation.
文摘A good friend is like a gentle breeze that blows away your gloomy mood,a beam of sunshine that warms your heart,and a guiding light that accompanies you on your journey.A true friend brings you comfort,joy,and encouragement.
基金supported by grants from the Research Grant Council of the Hong Kong Special Administrative Region,China(Project No.HKU 17207518).
文摘This paper presents a dynamic modeling method to test and examine the minimum mass of pressurized pore-gas for triggering landslides in stable gentle soil slopes.A stable gentle soil slope model is constructed with a dry cement powder core,a saturated clay middle layer,and a dry sand upper layer.The test injects H_(2)O_(2)solution into the cement core to produce new pore-gas.The model test includes three identical H_(2)O_(2)injections.The small mass of generated oxygen gas(0.07%of slope soil mass and landslide body)from the first injection can build sufficient pore-gas pressure to cause soil upheaval and slide.Meanwhile,despite the first injection causing leak paths in the clay layer,the generated small mass of gas from the second and third injections can further trigger the landslide.A dynamic theoretical analysis of the slope failure is carried out and the required minimum pore-gas pressure for the landslide is calculated.The mass and pressure of generated gas in the model test are also estimated based on the calibration test for oxygen generation from H_(2)O_(2)solution in cement powder.The results indicate that the minimum mass of the generated gas for triggering the landslide is 2 ppm to 0.07%of the landslide body.Furthermore,the small mass of gas can provide sufficient pressure to cause soil upheaval and soil sliding in dynamic analysis.
基金supported by the National Science Fund for Distinguished Young Scholars(Grant No.T2225027)the National Key R&D Program of China(Grant No.2023YFA1608902).
文摘Maintaining stable high temperatures under pressure remains a challenge in high-pressure,high-temperature experiments using multi-anvil presses(MAPs).Temperature fluctuations exceeding 10℃ at high pressures are common and particularly problematic with LaCrO_(3) heaters,which can experience significant power fluctuations and even failure due to substantial resistance changes—an issue conventional thyristorcontrolled heating systems cannot effectively manage.To address this limitation,we have developed the Multi-Anvil Stable Temperature controller(MASTer),a high-performance heating system optimized for MAP experiments.MASTer enables precise,high-speed measurement of heating parameters and power output control,incorporating a gentle regulation strategy to enhance stability.It ensures consistent heating across various heater types,including LaCrO_(3),with power fluctuations limited to±0.1 W and temperature fluctuations to within±2℃ in most cases.The design,operating principles,user interface,functionality,and performance of the heating system are discussed in detail.