期刊文献+

基于改进AdaBoost算法的人耳检测与跟踪 被引量:11

Fast Ear Detection and Tracking Based on Improved AdaBoost Algorithm
在线阅读 下载PDF
导出
摘要 人耳检测是人耳识别系统的第一个环节.在比较已有的人耳检测方法的基础上,介绍了一种复杂背景下的快速人耳检测与跟踪的方法.该方法主要分为两个阶段,离线级联分类器训练阶段和在线检测阶段.在离线训练阶段,首先结合人耳轮廓清晰,凹凸有致的特点,采用扩充后的haar-like型特征,依最近邻法则构造出弱分类器空间,然后根据经验选择GAB算法训练出强分类器,最后将多个强分类器级联成多层人耳检测器.在线检测阶段,为提高检测率,本文采用了调整分类器阈值和缩放检测子窗口的策略.最终检测器在CAS-PEAL人脸库上测试,检测率达到98%以上;在PⅣ1.7GHz的PC上对普通CMOS摄像头输入的320×240dpi视频进行人耳跟踪,速度可达6~7fps.实验结果表明,本文的人耳检测方法具有较好的实时性和一定的鲁棒性. Ear detection is the first step of an ear recognition system. On the basis of comparing to other existing approaches, this paper introduces a kind of fast ear detecting and tracking approach under the complex background, which has two stages: off-line cascaded classifier training and on-line ear detection. In the stage of off-line training, considering the vivid contour, the concave and convex of the ear, we apply the extended haar-like features to construct the space of the weak classifiers using the nearest neighbor norms. And then we choose the GAB algorithm with experience to train the strong classifiers which form the cascaded multi-layer ear detector. In the stage of the on-line detecting, we adopt the methods of adjusting the threshold of the strong classifiers and zooming in out the detecting sub-windows for speeding up while keeping the size of the original image. The testing experiments on the face database of CAS-PEAL result an upwards of 98% hit rate, and on the 320 x 240 dpi video inputted by the CMOS camera using PⅣ 1.7GHz PC result a speed of 6 ~ 7fps, which shows that the proposed method is significantly efficient and robust.
出处 《中国图象图形学报》 CSCD 北大核心 2007年第2期222-227,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60573058 60375002) 北京市教委重点学科共建项目(XK100080431)
关键词 人耳检测 GENTLE ADABOOST haar-like型特征 级联分类器 ear detection, Gentle AdaBoost, haar-like features, cascaded classifier
  • 相关文献

参考文献8

  • 1王敏,穆志纯,徐正光,席德春.基于肤色模型的人耳检测系统[J].微计算机信息,2005,21(08S):51-53. 被引量:6
  • 2赵祎.基于肤色及轮廓信息的人耳实时检测与跟踪[D].北京:北京科技大学,2005.
  • 3Hui Chen,Bir Bhanu.Human ear detection from side face range images[A].In:Proceedings of the 17th ICPR[C],Cambridge,UK,2004,3:574 - 577.
  • 4Schapire R E.The strength of weak learnability[J].Machine Learming,1990,5(2):197 -227.
  • 5Freund Y,Schapire R E.A decision-theoretic generalization of online learning and an application to boosting[J].Journal of Computer and System Sciences,1997,55(1):119 - 139.
  • 6Paul Viola,Michael Jones.Robust Real-time Object Detection[R].TR CRL 2001/01,Cambridge,UK:Cambridge Research Laboratory,2001.
  • 7Lienhart Rainer,Kuranov Alexander,Pisarevsky vadim.Empirical analysis of detection cascades of boosted classifiers for rapid object detection[A].In:Proceedings of the 25th German Pattern Recognition Symposium[C],Magdeburg,2003:297 - 304.
  • 8武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66

二级参考文献16

  • 1Xiao De\|gui, Yu S heng\|sheng, Zhou Jing\|li School of Computer Science and Technol ogy, Huazhong University of Science and Technology,Wuhan 430074, Hubei, China.Motion Tracking with Fast Adaptive Background Subtraction[J].Wuhan University Journal of Natural Sciences,2003,8(01A):35-40. 被引量:1
  • 2B. Moghaddam, A. Pentlan. Beyond linear eigenspaces: Bayesian matching for face recognition. In: Face Recognition: From Theory to Application. New York: Springer-Verlag 1998. 230~243.
  • 3H. A. Rowley. Neural network-based human face detection:[Ph. D. dissertation]. Pittsburgh, USA: Carnegie Mellon University, 1999.
  • 4R. Feraud, O.J. Bernier, Jean-Emmanuel Viallet, et al. A Fast and accurate face detector based on neural networks. IEEE Trans.Pattern Analysis and Machine Intelligence, 2001, 23(1): 42~53.
  • 5H. Schneiderman, T. Kanade. A statistical method for 3D object detection applied to faces and cars. IEEE Conf. Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,2000.
  • 6E. Osuna, R. Freund, F. Girosi. Training support vector machines: An application to face detection. IEEE Conf. Computer Vision and Pattern Recognition, Puerto Rico, 1997.
  • 7V.P. Kumar, T. Poggio. Learning-based approach to real time tracking and analysis of faces. http: ∥ cbcl. mit. edu/cbcl/publications/ai- publications, 1999.
  • 8P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. IEEE Conf. Computer Vision and Pattern Recognition, Kauai, Hawaii, USA, 2001.
  • 9Y. Freund, R. E. Schapire. Experiments with a new boosting algorithm. In: Proc. the 13th Conf. Machine Learning. San Francisco: Morgan Kaufmann, 1996. 148~156.
  • 10R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 1999, 37 (3) .297~336.

共引文献70

同被引文献76

引证文献11

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部