Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and eff...Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective.展开更多
Small-molecule drugs are widely used in daily life.There are still issues with the current industrial synthesis techniques for small-molecule drugs,such as the use of expensive metal catalysts,convoluted reaction proc...Small-molecule drugs are widely used in daily life.There are still issues with the current industrial synthesis techniques for small-molecule drugs,such as the use of expensive metal catalysts,convoluted reaction processes,and non-recyclable catalysts.The benefits of photocatalytic organic synthesis over conventional techniques are mild conditions,environmental friendliness,and great selectivity.Porous framework materials can precisely modulate catalytic sites'electronic state and ligand structure to improve photocatalytic performance.In particular,MOFs,COFs and PCCs based photocatalysts have received extensive research interest due to their unique morphology,structural adjustability,high photocatalytic performance,unique recyclability,excellent chemical stability,easy synthesis and low cost.Therefore,a key area for future research is the development of porous framework materials as photocatalysts for the synthesis of small-molecule drugs or drug precursors.展开更多
Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic a...Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic applications,reticular framework materials,including metal-organic frameworks(MOFs),cova-lent organic frameworks(COFs),and hydrogen-bonded organic frameworks(HOFs),have attracted signif-icant attention due to their high surface area,tunable architectures,and versatile chemical compositions.These properties enable efficient light harvesting and charge separation,making them promising candi-dates for various photocatalytic processes.This review systematically explores recent advancements in the synthesis and structural properties of MOFs,COFs,and HOFs,elucidating the complex mechanisms governing solar-driven photocatalysis and comparing their performance with a particular focus on their applications in CO_(2)reduction,H_(2)generation,H_(2)O_(2)production,N_(2)fixation,and pollutant degradation.Key strategies for enhancing photocatalytic performance,including structural modifications,bandgap en-gineering,defect engineering,hybridization,and heterojunction formation,are critically analyzed.A com-parative evaluation of reticular framework materials against traditional semiconductors is provided,con-sidering factors such as efficiency,cost,and long-term stability.Furthermore,this review highlights the challenges related to stability and scalability,along with key achievements and barriers to practical im-plementation.This work offers possible insights to overcome existing limitations and improve efficiency.Ultimately,this comprehensive assessment highlights the pivotal role of reticular frameworks in advanc-ing sustainable energy solutions and provides a roadmap for future research and innovation in this rapidly evolving field.展开更多
Covalent organic frameworks(COFs)are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks.Due to their large surface area,high intrinsic pore space,goo...Covalent organic frameworks(COFs)are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks.Due to their large surface area,high intrinsic pore space,good crystallization properties,high stability,and designability of the resultant units,COFs are widely studied and used in the fields of gas adsorption,drug transport,energy storage,photoelectric catalysis,electrochemistry,and sensors.In recent years,the rapid development of the Internet of Things and people’s yearning for a better life have put forward higher and more requirements for sensors,which are the core components of the Internet of Things.Therefore,this paper reviews the recent progress of COFs in synthesis methods and sensing applications,especially in the last five years.This paper first introduces structure,properties,and synthesis methods of COFs and discusses advantages and disadvantages of different synthesis methods.Then,the research progress of COFs in different sensing fields,such as metal ion sensors,gas sensors,biomedical sensors,humidity sensors,and pH sensors,is introduced systematically.Conclusions and prospects are also presented in order to provide a reference for researchers concerned with COFs and sensors.展开更多
Covalent organic frameworks(COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements(B,C,N,O,Si) and linked by robust covalent bonds to endow such material ...Covalent organic frameworks(COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements(B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.展开更多
As a common volatile organic compound,benzene(C_(6)H_(6)) exists in home decoration pollution gas widely,which causes great harm to the environment and human health.Therefore,it is necessary to rationally design advan...As a common volatile organic compound,benzene(C_(6)H_(6)) exists in home decoration pollution gas widely,which causes great harm to the environment and human health.Therefore,it is necessary to rationally design advanced materials with high selectivity to detect and capture C_(6)H_(6).Herein,combined with the d-band center theory and cohesive energy,a new two-dimensional metal-organic framework material,Ni-doped hexaaminobenzene-based coordination polymer(Ni-HAB-CP)is designed,and its application potential as a C_(6)H_(6) sensor are systematically investigated by using first principles calculation.The result shows that Ni-HAB-CP has a strong adsorption for C_(6)H_(6) without any additional method.In addition,NiHAB-CP can maintain good conductivity before and after adsorption,and C_(6)H_(6) can be easily desorbed from the surface of Ni-HAB-CP by charge control.Moreover,the I-V curve calculated by Atomistix Toolkit(ATK)reveals that Ni-HAB-CP has high sensitivity and selectivity to C_(6)H_(6).Hence,Ni-HAB-CP is expected to be used as a potential material for a highly efficient and recyclable C_(6)H_(6) sensor in the future.The calculation and analysis methods used in this paper could provide a certain theoretical basis and reference for the future research of gas sensors.展开更多
Compared with traditional materials,metal-organic framework materials(MOFs)have the characteristics of drug release controllability,degradability,designability and adjustability of composition and structure,excellent ...Compared with traditional materials,metal-organic framework materials(MOFs)have the characteristics of drug release controllability,degradability,designability and adjustability of composition and structure,excellent load capacity,and designability and adjustability of channel shape and size,and have shown a wide range of application value in the field of biomedicine.In this paper,based on the structural characteristics of MOFs,the synthetic design of MOF materials was expounded,and the research achievements of MOF materials in biomedicine in recent years were reviewed.展开更多
Bone defects are a common pathology in bone tissue diseases,and existing therapeutic interventions have significant limitations,highlighting the need for innovative strategies and advanced biomaterials.DNA,traditional...Bone defects are a common pathology in bone tissue diseases,and existing therapeutic interventions have significant limitations,highlighting the need for innovative strategies and advanced biomaterials.DNA,traditionally recognized as a prominent genetic material,also possesses exceptional properties as a biological material,making it an ideal nanoscale building block for creating various DNA-based biomaterials,such as DNA framework materials and DNA hydrogels.DNA-based biomaterials offer notable advantages,including structural versatility,biocompatibility,and,crucially,programmability,which position them as promising candidates for bone tissue engineering.This review explores recent advancements in the use of DNA-based biomaterials for bionic mineralization and drug delivery systems,as well as their future potential in this field.展开更多
(C6H(14)N2)[NH4(ClO4)3] is a newly developed porous hybrid inorganic-organic framework material with easy access and excellent detonation performances,however,its thermal properties is still unclear and severely hampe...(C6H(14)N2)[NH4(ClO4)3] is a newly developed porous hybrid inorganic-organic framework material with easy access and excellent detonation performances,however,its thermal properties is still unclear and severely hampered further applications.In this study,thermal behaviors and non-isothermal decomposition reaction kinetics of(C6H(14)N2)[NH4(ClO4)3] were investigated systematically by the combination of differential scanning calorimetry(DSC) and simultaneous thermal analysis methods.In-situ FTIR spectroscopy technology was applied for investigation of the structure changes of(C6H(14)N2) NH4(ClO4)3]and some selected referents for better understanding of interactions between different components during the heating process.Experiment results indicated that the novel molecular perovskite structure renders(C6H(14)N2)[NH4(ClO4)3] better thermal stability than most of currently used energetic materials.Underhigh temperature s,the stability of the cage skeleton constructed by NH4^+and ClO4^-ions determined the decomposition process rather than organic moiety confined in the skeleton.The simple synthetic method,good detonation performances and excellent thermal properties make(C6H(14)N2)[NH4(ClO4)3] an ideal candidate for the preparation of advanced explosives and propellants.展开更多
Hierarchical flower-like architectures of[Ni_3(BTC)_2·12H_2O](BTC^3=benzene-1,3,5-tricarboxylate) were successfully prepared by a simple solution-phase method under mild conditions without any template or sur...Hierarchical flower-like architectures of[Ni_3(BTC)_2·12H_2O](BTC^3=benzene-1,3,5-tricarboxylate) were successfully prepared by a simple solution-phase method under mild conditions without any template or surfactant.Phase-pure porous NiO nanocrystals were obtained by annealing the Ni-BTC complex without significant alteration in morphology.The product was characterized by X-ray diffraction techniques,field-emission scanning electron microscopy(FESEM).transmission electron microscopy(TEM) and high-resolution TEM(HRTEM).The catalytic effect of the NiO product was investigated on the thermal decomposition of ammonium perchlorate(AP) and it was found that the annealed NiO product has higher catalytic activity than the commercial NiO.展开更多
Durability, rate capability, capacity and tap density are paramount performance metrics for promising anode materials, especially for sodium ion batteries. Herein, a carbon free mesoporous CoTiO3 micro-prism with a hi...Durability, rate capability, capacity and tap density are paramount performance metrics for promising anode materials, especially for sodium ion batteries. Herein, a carbon free mesoporous CoTiO3 micro-prism with a high tap density (1.8 gcm^-3) is newly developed by using a novel Co-Ti- bimetal organic framework (BMOF) as precursor. It is also interesting to find that the Co-Ti-BMOF derived carbon-free mesoporous CoTiO3 micro-prisms deliver a superior stable and more powerful Na^+ storage than other similar reported titania, titanate and their carbon composites. Its achieved ca- pacity retention ratio for 2,000 cycles is up to 90.1% at 5 A g^-1.展开更多
Covalent organic frameworks (COFs) are well known as the next generation of shape-persistent zeolite analogues, which have brought new impetus to the development of porous organic materials as well as two-dimensional ...Covalent organic frameworks (COFs) are well known as the next generation of shape-persistent zeolite analogues, which have brought new impetus to the development of porous organic materials as well as two-dimensional polymers. Since the advent of COFs in 2005, many striking findings have definitely proven their great potentials expanding applications across energy,environment and healthcare fields. With thorough exploration over a decade, research interest has been drawn on the scientific challenges on chemistry, while making full play of COF values has remained far from satisfactory yet. Thus opening an avenue to modulating COF assemblies on the multi-scale is no longer just an option, but a necessity for matching the application requirements with enhanced performances. In this mini-review, we summarize the recent progress on design of nanoscale COFs with varying forms. Detailed description is concentrated on the synthetic strategies of COF assemblies such as spheres, fibers,tubes, coatings and films, thereby shedding light on the flexible manipulation over dimensions, compositions and morphologies.Meanwhile, the advanced applications of nanoscale COFs have been discussed here with comparison of their bulky counterparts.展开更多
Compared with nanoparticle-aspect relatives titanium dioxide(TiO2),titanium-oxo clusters(TOCs)are atomically structural-determined and can be further precisely modified through coordination and supramolecular chemistr...Compared with nanoparticle-aspect relatives titanium dioxide(TiO2),titanium-oxo clusters(TOCs)are atomically structural-determined and can be further precisely modified through coordination and supramolecular chemistry.Another parallel research direction is titanium-based metal-organic frameworks,and those based on TOC have attracted particular attention because of their high optical performances resulting from the cluster aggregation effect.Though challenging,assembling macro-materials from specific clusters helps establish the assembly chemistry of clusters and incorporates porous andflexible characteristics into a single bulk material.Although separate reviews are reported in these two branches,no com-prehensive review is available to highlight the bridges between them.Herein,we review and summarize the development and progress of new aggregation of TOCs,from intramolecular unique cluster aggregation to hierarchical intermolecular aggre-gation via covalent forces,coordination bonds,and non-covalent forces using the specific clusters as precursors.We hope this reviewfills the gap in the methodology of assembling particular-aggregated TOCs and their derived frameworks,providing general guidance to researchers interested in this area.展开更多
Designing electromagnetic wave absorption(EMWA)materials with wide bandwidth,strong absorption,and light weight is still a great challenge for practical applications.Herein,the novel nitrogen doped carbon(NDC)/MoS_(2)...Designing electromagnetic wave absorption(EMWA)materials with wide bandwidth,strong absorption,and light weight is still a great challenge for practical applications.Herein,the novel nitrogen doped carbon(NDC)/MoS_(2) composite with rationally designed composition and structure was developed.The NDC particles were introduced into MoS_(2) nanosheets through the calcination of ZIF-8 precursor and consequent hydrothermal process.A series of characterizations were carried out to investigate the physical properties of the as-prepared nanocomposites.The NDC particles exhibited the shape of rhombic dodecahedron with the size of about 500 nm,which were decorated on flower-shaped MoS_(2) with the size of about 3μm.With the increasing NDC content,the absorbing properties of NDC/MoS_(2) composites increased firstly and then decreased.The features of NDC/MoS_(2) composite including interconnected porous structure,nitrogen dopant,and appropriate electrical conductivity gave rise to the polarization,multiple reflection,multiple scattering,and impedance matching,resulting in the outstanding EMWA performance.With a filler loading ratio of 30 wt.%,the optimized EMWA property can be achieved when the mass ratio of NDC to MoS_(2) was adjusted to be 1:1.At a coating thickness of 3.0 mm,the effective EMWA bandwidth(<−10 dB)reached 6.08 GHz(8.56–14.64 GHz).These satisfactory achievements provide a way for the reasonable design of high-performance EMWA and new ideas for future research on wideband EMWA.展开更多
Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering(SERS)sensing,photoca...Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering(SERS)sensing,photocatalysis,and photovoltaic applications.However,the long-term maintenance and use of photo-induced vacancy defects remain elusive,because of their rapid self-healing upon air exposure.In this study,we demonstrate that photo-induced oxygen vacancy(PIVO)defects can be stabilized by the photoexcitation of metal–organic framework(MOF)materials,which is crucial for SERS analysis.The PIVO defects in MOF materials are stable for at least two weeks in the ambient atmosphere,owing to the combination of steric hindrance and electron delocalization around vacancy defects,which significantly contrasts the short lifetime(within minutes)of PIVO defects in metal-oxide semiconductors.With the formation of stable PIVO defects,a prominent SERS enhancement surpassing that of pristine MOFs is achieved,accompanied with a reduced limit of detection by three orders of magnitude.Moreover,the additional SERS enhancement rendered by PIVO defects can be stably retained and is effective for monitoring various small molecules,such as dopamine and bisphenol A.展开更多
Bi is a promising anode material for potassium-ion batteries(PIBs)due to its high theoretical capacity.However,severe pulverization upon cycling limits its practical applications.In this work,we propose a new approach...Bi is a promising anode material for potassium-ion batteries(PIBs)due to its high theoretical capacity.However,severe pulverization upon cycling limits its practical applications.In this work,we propose a new approach of using metastable alloys with Bi elements.Metastable Bi:Co and Bi:Fe alloys nanodots@carbon anode materials(Bi:Co and Bi:Fe@C)are synthesized for the first time via simple annealing of their metal-organic frameworks(MOF)precursors.These prepared materials are demonstrated as ideal hosts for high-rate K-ion storage.Bi_(0.85)Co_(0.15)@C and Bi_(0.83)Fe_(0.17)@C electrodes respectively deliver superior 178 and 253 mAh·g^(−1)at 20 A·g^(−1),as well as stable cycling performance at 2 A·g^(−1).Ex situ scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),and transmission electron microscopy(TEM)studies on Bi:Co@C indicate that the elemental Co separates out during the initial potassiation and stands during the following discharge/charge cycles.In situ formed Co precipitates can act as(1)“conductive binders”as well as(2)“separators”to prevent the severe aggregation of adjacent active elemental Bi nanoparticles and(3)accelerate the potassiation/de-potassiation kinetics in elemental Bi precipitates after initial discharge/charge cycles.This work could inspire the development of metal-type anodes.展开更多
基金the financial support from the National Natural Science Foundation of China(22090062,21922810,21825802,22138003,22108083,and 21725603)the Guangdong Pearl River Talents Program(2021QN02C8)+3 种基金the Science and Technology Program of Guangzhou(202201010118)Zhejiang Provincial Natural Science Foundation of China(LR20B060001)National Science Fund for Excellent Young Scholars(22122811)China Postdoctoral Science Foundation(2022M710123)。
文摘Carbon peaking and carbon neutralization trigger a technical revolution in energy&environment related fields.Development of new technologies for green energy production and storage,industrial energy saving and efficiency reinforcement,carbon capture,and pollutant gas treatment is in highly imperious demand.The emerging porous framework materials such as metal–organic frameworks(MOFs),covalent organic frameworks(COFs)and hydrogen-bonded organic frameworks(HOFs),owing to the permanent porosity,tremendous specific surface area,designable structure and customizable functionality,have shown great potential in major energy-consuming industrial processes,including sustainable energy gas catalytic conversion,energy-efficient industrial gas separation and storage.Herein,this manuscript presents a systematic review of porous framework materials for global and comprehensive energy&environment related applications,from a macroscopic and application perspective.
基金financially supported by the National Natural Science Foundation of China(NSFC,Nos.21501133,22371067)the China Hunan Provincial Science&Technology Department(Nos.2020RC3020 and 2021JJ20021)。
文摘Small-molecule drugs are widely used in daily life.There are still issues with the current industrial synthesis techniques for small-molecule drugs,such as the use of expensive metal catalysts,convoluted reaction processes,and non-recyclable catalysts.The benefits of photocatalytic organic synthesis over conventional techniques are mild conditions,environmental friendliness,and great selectivity.Porous framework materials can precisely modulate catalytic sites'electronic state and ligand structure to improve photocatalytic performance.In particular,MOFs,COFs and PCCs based photocatalysts have received extensive research interest due to their unique morphology,structural adjustability,high photocatalytic performance,unique recyclability,excellent chemical stability,easy synthesis and low cost.Therefore,a key area for future research is the development of porous framework materials as photocatalysts for the synthesis of small-molecule drugs or drug precursors.
基金financially supported by the National Natural Science Foundation of China(Nos.22350410391 and 22001094)the Research Initiation Fund Project from Zhejiang Sci-Tech University(No.23212072-Y).
文摘Photocatalysis,harnessing abundant solar energy,presents a sustainable strategy to address the dual chal-lenges of fossil fuel depletion and environmental degradation.Among the emerging materials for photo-catalytic applications,reticular framework materials,including metal-organic frameworks(MOFs),cova-lent organic frameworks(COFs),and hydrogen-bonded organic frameworks(HOFs),have attracted signif-icant attention due to their high surface area,tunable architectures,and versatile chemical compositions.These properties enable efficient light harvesting and charge separation,making them promising candi-dates for various photocatalytic processes.This review systematically explores recent advancements in the synthesis and structural properties of MOFs,COFs,and HOFs,elucidating the complex mechanisms governing solar-driven photocatalysis and comparing their performance with a particular focus on their applications in CO_(2)reduction,H_(2)generation,H_(2)O_(2)production,N_(2)fixation,and pollutant degradation.Key strategies for enhancing photocatalytic performance,including structural modifications,bandgap en-gineering,defect engineering,hybridization,and heterojunction formation,are critically analyzed.A com-parative evaluation of reticular framework materials against traditional semiconductors is provided,con-sidering factors such as efficiency,cost,and long-term stability.Furthermore,this review highlights the challenges related to stability and scalability,along with key achievements and barriers to practical im-plementation.This work offers possible insights to overcome existing limitations and improve efficiency.Ultimately,this comprehensive assessment highlights the pivotal role of reticular frameworks in advanc-ing sustainable energy solutions and provides a roadmap for future research and innovation in this rapidly evolving field.
基金funded by the National Natural Science Foundation of China(No.21964016)Xinjiang National Science Fund for Distinguished Young Scholars(No.2022D01E37)+1 种基金Key programs of Xinjiang Natural Science Foundation(No.2022B02051)Tianshan Innovation Team Program of Xinjiang Uygur Autonomous Region(No.2020D14038).
文摘Covalent organic frameworks(COFs)are an emerging type of porous crystalline polymers formed by combining strong covalent bonds with organic building blocks.Due to their large surface area,high intrinsic pore space,good crystallization properties,high stability,and designability of the resultant units,COFs are widely studied and used in the fields of gas adsorption,drug transport,energy storage,photoelectric catalysis,electrochemistry,and sensors.In recent years,the rapid development of the Internet of Things and people’s yearning for a better life have put forward higher and more requirements for sensors,which are the core components of the Internet of Things.Therefore,this paper reviews the recent progress of COFs in synthesis methods and sensing applications,especially in the last five years.This paper first introduces structure,properties,and synthesis methods of COFs and discusses advantages and disadvantages of different synthesis methods.Then,the research progress of COFs in different sensing fields,such as metal ion sensors,gas sensors,biomedical sensors,humidity sensors,and pH sensors,is introduced systematically.Conclusions and prospects are also presented in order to provide a reference for researchers concerned with COFs and sensors.
基金the National Natural Science Foundation of China(Nos.51673084,51473061)the JLU Cultivation Fund for the National Science Fund for Distinguished Young Scholars,for financial support
文摘Covalent organic frameworks(COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements(B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.
基金National Natural Science Foundation of China(No.51471124 and U1766216)National Key R&D Program of China(No.2018YFB0905600)+2 种基金Natural Science Foundation of Shaanxi Province,China(Nos.2019JM-189and 2020JM-218)the Fundamental Research Funds for the Central Universities(No.CHD300102311405)HPC platform,Xi’an Jiaotong University。
文摘As a common volatile organic compound,benzene(C_(6)H_(6)) exists in home decoration pollution gas widely,which causes great harm to the environment and human health.Therefore,it is necessary to rationally design advanced materials with high selectivity to detect and capture C_(6)H_(6).Herein,combined with the d-band center theory and cohesive energy,a new two-dimensional metal-organic framework material,Ni-doped hexaaminobenzene-based coordination polymer(Ni-HAB-CP)is designed,and its application potential as a C_(6)H_(6) sensor are systematically investigated by using first principles calculation.The result shows that Ni-HAB-CP has a strong adsorption for C_(6)H_(6) without any additional method.In addition,NiHAB-CP can maintain good conductivity before and after adsorption,and C_(6)H_(6) can be easily desorbed from the surface of Ni-HAB-CP by charge control.Moreover,the I-V curve calculated by Atomistix Toolkit(ATK)reveals that Ni-HAB-CP has high sensitivity and selectivity to C_(6)H_(6).Hence,Ni-HAB-CP is expected to be used as a potential material for a highly efficient and recyclable C_(6)H_(6) sensor in the future.The calculation and analysis methods used in this paper could provide a certain theoretical basis and reference for the future research of gas sensors.
基金Supported by Subproject of Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine(GXZYKF2019-7).
文摘Compared with traditional materials,metal-organic framework materials(MOFs)have the characteristics of drug release controllability,degradability,designability and adjustability of composition and structure,excellent load capacity,and designability and adjustability of channel shape and size,and have shown a wide range of application value in the field of biomedicine.In this paper,based on the structural characteristics of MOFs,the synthetic design of MOF materials was expounded,and the research achievements of MOF materials in biomedicine in recent years were reviewed.
基金supported by the National Key R&D Program of China(2022YFA1603603,2023YFB3810202 and 2022YFB3808200)National Natural Science Foundation of China(32271385,22074046 and 22377076)+1 种基金Basic and Applied Basic Research Foundation of Guangdong Province(2022A1515010887 and 2022A1515011839)Shanghai Pujiang Program(22PJ1408500,to Huan Zhang).
文摘Bone defects are a common pathology in bone tissue diseases,and existing therapeutic interventions have significant limitations,highlighting the need for innovative strategies and advanced biomaterials.DNA,traditionally recognized as a prominent genetic material,also possesses exceptional properties as a biological material,making it an ideal nanoscale building block for creating various DNA-based biomaterials,such as DNA framework materials and DNA hydrogels.DNA-based biomaterials offer notable advantages,including structural versatility,biocompatibility,and,crucially,programmability,which position them as promising candidates for bone tissue engineering.This review explores recent advancements in the use of DNA-based biomaterials for bionic mineralization and drug delivery systems,as well as their future potential in this field.
基金supported by the National Natural Science Foundation of China(Nos.21805226 and 21805223)the China Postdoctoral Science Foundation(No.2018M633552)China Scholarship Council(No.201805290006)。
文摘(C6H(14)N2)[NH4(ClO4)3] is a newly developed porous hybrid inorganic-organic framework material with easy access and excellent detonation performances,however,its thermal properties is still unclear and severely hampered further applications.In this study,thermal behaviors and non-isothermal decomposition reaction kinetics of(C6H(14)N2)[NH4(ClO4)3] were investigated systematically by the combination of differential scanning calorimetry(DSC) and simultaneous thermal analysis methods.In-situ FTIR spectroscopy technology was applied for investigation of the structure changes of(C6H(14)N2) NH4(ClO4)3]and some selected referents for better understanding of interactions between different components during the heating process.Experiment results indicated that the novel molecular perovskite structure renders(C6H(14)N2)[NH4(ClO4)3] better thermal stability than most of currently used energetic materials.Underhigh temperature s,the stability of the cage skeleton constructed by NH4^+and ClO4^-ions determined the decomposition process rather than organic moiety confined in the skeleton.The simple synthetic method,good detonation performances and excellent thermal properties make(C6H(14)N2)[NH4(ClO4)3] an ideal candidate for the preparation of advanced explosives and propellants.
基金financially supported by the National Natural Science Foundation of China(Nos.91122001 and 21021062)the National Basic Research Program of China(No. 2010CB923303)
文摘Hierarchical flower-like architectures of[Ni_3(BTC)_2·12H_2O](BTC^3=benzene-1,3,5-tricarboxylate) were successfully prepared by a simple solution-phase method under mild conditions without any template or surfactant.Phase-pure porous NiO nanocrystals were obtained by annealing the Ni-BTC complex without significant alteration in morphology.The product was characterized by X-ray diffraction techniques,field-emission scanning electron microscopy(FESEM).transmission electron microscopy(TEM) and high-resolution TEM(HRTEM).The catalytic effect of the NiO product was investigated on the thermal decomposition of ammonium perchlorate(AP) and it was found that the annealed NiO product has higher catalytic activity than the commercial NiO.
基金supported by the National Natural Science Foundation of China(51402155 and 21373107)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)(YX03002)+2 种基金Jiangsu National Synergistic Innovation Center for Advanced Materials(SICAM)Foundation of NJUPT(NY217077)PolyU Start-up Fund for New Recruits(No.1-ZE8R)
文摘Durability, rate capability, capacity and tap density are paramount performance metrics for promising anode materials, especially for sodium ion batteries. Herein, a carbon free mesoporous CoTiO3 micro-prism with a high tap density (1.8 gcm^-3) is newly developed by using a novel Co-Ti- bimetal organic framework (BMOF) as precursor. It is also interesting to find that the Co-Ti-BMOF derived carbon-free mesoporous CoTiO3 micro-prisms deliver a superior stable and more powerful Na^+ storage than other similar reported titania, titanate and their carbon composites. Its achieved ca- pacity retention ratio for 2,000 cycles is up to 90.1% at 5 A g^-1.
基金supported by the National Natural Science Foundation of China (21474015, 21774023)Science and Technology Commission of Shanghai Municipality (14ZR1402300)
文摘Covalent organic frameworks (COFs) are well known as the next generation of shape-persistent zeolite analogues, which have brought new impetus to the development of porous organic materials as well as two-dimensional polymers. Since the advent of COFs in 2005, many striking findings have definitely proven their great potentials expanding applications across energy,environment and healthcare fields. With thorough exploration over a decade, research interest has been drawn on the scientific challenges on chemistry, while making full play of COF values has remained far from satisfactory yet. Thus opening an avenue to modulating COF assemblies on the multi-scale is no longer just an option, but a necessity for matching the application requirements with enhanced performances. In this mini-review, we summarize the recent progress on design of nanoscale COFs with varying forms. Detailed description is concentrated on the synthetic strategies of COF assemblies such as spheres, fibers,tubes, coatings and films, thereby shedding light on the flexible manipulation over dimensions, compositions and morphologies.Meanwhile, the advanced applications of nanoscale COFs have been discussed here with comparison of their bulky counterparts.
基金National Natural Science Foundation of China,Grant/Award Numbers:U23A2095,22371278,92061104Science Fund for Distinguished Young Scholars of Fujian Province,Grant/Award Number:2021J06035+1 种基金Funding of Fujian Provincial Chemistry Discipline Alliance,Grant/Award Number:50025401Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:Y2021081。
文摘Compared with nanoparticle-aspect relatives titanium dioxide(TiO2),titanium-oxo clusters(TOCs)are atomically structural-determined and can be further precisely modified through coordination and supramolecular chemistry.Another parallel research direction is titanium-based metal-organic frameworks,and those based on TOC have attracted particular attention because of their high optical performances resulting from the cluster aggregation effect.Though challenging,assembling macro-materials from specific clusters helps establish the assembly chemistry of clusters and incorporates porous andflexible characteristics into a single bulk material.Although separate reviews are reported in these two branches,no com-prehensive review is available to highlight the bridges between them.Herein,we review and summarize the development and progress of new aggregation of TOCs,from intramolecular unique cluster aggregation to hierarchical intermolecular aggre-gation via covalent forces,coordination bonds,and non-covalent forces using the specific clusters as precursors.We hope this reviewfills the gap in the methodology of assembling particular-aggregated TOCs and their derived frameworks,providing general guidance to researchers interested in this area.
基金supported by the National Natural Science Foundation of China(No.52173267)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX21_XZ013).
文摘Designing electromagnetic wave absorption(EMWA)materials with wide bandwidth,strong absorption,and light weight is still a great challenge for practical applications.Herein,the novel nitrogen doped carbon(NDC)/MoS_(2) composite with rationally designed composition and structure was developed.The NDC particles were introduced into MoS_(2) nanosheets through the calcination of ZIF-8 precursor and consequent hydrothermal process.A series of characterizations were carried out to investigate the physical properties of the as-prepared nanocomposites.The NDC particles exhibited the shape of rhombic dodecahedron with the size of about 500 nm,which were decorated on flower-shaped MoS_(2) with the size of about 3μm.With the increasing NDC content,the absorbing properties of NDC/MoS_(2) composites increased firstly and then decreased.The features of NDC/MoS_(2) composite including interconnected porous structure,nitrogen dopant,and appropriate electrical conductivity gave rise to the polarization,multiple reflection,multiple scattering,and impedance matching,resulting in the outstanding EMWA performance.With a filler loading ratio of 30 wt.%,the optimized EMWA property can be achieved when the mass ratio of NDC to MoS_(2) was adjusted to be 1:1.At a coating thickness of 3.0 mm,the effective EMWA bandwidth(<−10 dB)reached 6.08 GHz(8.56–14.64 GHz).These satisfactory achievements provide a way for the reasonable design of high-performance EMWA and new ideas for future research on wideband EMWA.
基金supports from the National Key Research and Development Program of China(No.2020YFB1505703)This work was supported by the National Natural Science Foundation of China(Nos.52172299,22175198,51772319,51772320,and 51972331)+3 种基金Z.G.Z would like to acknowledge the support from the External Cooperation Program of the Chinese Academy of Sciences(No.121E32KYSB20190008)Six Talent Peaks Project of Jiangsu Province(No.XCL-170)S.C would like to acknowledge the support from the Youth Innovation Promotion Association,CAS(No.2018356)the Outstanding Youth Fund of Jiangxi(No.20192BCBL23027).
文摘Photo-induced vacancy defects are employed strategically to imbue semiconductors with enhanced performance characteristics for many important applications such as surface-enhanced Raman scattering(SERS)sensing,photocatalysis,and photovoltaic applications.However,the long-term maintenance and use of photo-induced vacancy defects remain elusive,because of their rapid self-healing upon air exposure.In this study,we demonstrate that photo-induced oxygen vacancy(PIVO)defects can be stabilized by the photoexcitation of metal–organic framework(MOF)materials,which is crucial for SERS analysis.The PIVO defects in MOF materials are stable for at least two weeks in the ambient atmosphere,owing to the combination of steric hindrance and electron delocalization around vacancy defects,which significantly contrasts the short lifetime(within minutes)of PIVO defects in metal-oxide semiconductors.With the formation of stable PIVO defects,a prominent SERS enhancement surpassing that of pristine MOFs is achieved,accompanied with a reduced limit of detection by three orders of magnitude.Moreover,the additional SERS enhancement rendered by PIVO defects can be stably retained and is effective for monitoring various small molecules,such as dopamine and bisphenol A.
基金the NSFC/RGC Joint Research Scheme 2020/21(No.N_CityU104/20).
文摘Bi is a promising anode material for potassium-ion batteries(PIBs)due to its high theoretical capacity.However,severe pulverization upon cycling limits its practical applications.In this work,we propose a new approach of using metastable alloys with Bi elements.Metastable Bi:Co and Bi:Fe alloys nanodots@carbon anode materials(Bi:Co and Bi:Fe@C)are synthesized for the first time via simple annealing of their metal-organic frameworks(MOF)precursors.These prepared materials are demonstrated as ideal hosts for high-rate K-ion storage.Bi_(0.85)Co_(0.15)@C and Bi_(0.83)Fe_(0.17)@C electrodes respectively deliver superior 178 and 253 mAh·g^(−1)at 20 A·g^(−1),as well as stable cycling performance at 2 A·g^(−1).Ex situ scanning electron microscopy(SEM),X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD),and transmission electron microscopy(TEM)studies on Bi:Co@C indicate that the elemental Co separates out during the initial potassiation and stands during the following discharge/charge cycles.In situ formed Co precipitates can act as(1)“conductive binders”as well as(2)“separators”to prevent the severe aggregation of adjacent active elemental Bi nanoparticles and(3)accelerate the potassiation/de-potassiation kinetics in elemental Bi precipitates after initial discharge/charge cycles.This work could inspire the development of metal-type anodes.