Ethernet link aggregation, which provides an easy and cost-effective way to increase both bandwidth and link availability between a pair of devices, is well suited for data center networks. However, all the traffic sp...Ethernet link aggregation, which provides an easy and cost-effective way to increase both bandwidth and link availability between a pair of devices, is well suited for data center networks. However, all the traffic splitting algorithms used in existing Ethernet link aggregation are flow-level which do not work well owing to the traffic characteristics of data centers. Though frame-level traffic splitting can achieve optimal load balance and the maximum benefits from aggregated capacity, it is generally deprecated in most cases because of frame disordering which can disrupt the operation of many Internet protocols, most notably transmission control protocol (TCP). To address this issue, we first investigate the causes of frame disordering in link aggregation and find that all of them either are no longer true or can be prevented in data centers. Then we present a byte-counter frame-level traffic splitting algorithm which achieves optimal performance while causes no frame disordering. The only requirement is that frames in a flow are the same size which can be easily met in data centers. Simulation results show that the proposed frame-level traffic splitting method could achieve higher throughput and optimal load balance. The average completion time of different sized flows is reduced by 24% on average and by up to 46%.展开更多
高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框...高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。展开更多
基金supported by the National Natural Science Foundation of China(61002011)the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2009KF-2-08)+1 种基金the National Basic Research Program of China(2009CB320505)the Hi-Tech Research and Development Program of China(2011AA01A102)
文摘Ethernet link aggregation, which provides an easy and cost-effective way to increase both bandwidth and link availability between a pair of devices, is well suited for data center networks. However, all the traffic splitting algorithms used in existing Ethernet link aggregation are flow-level which do not work well owing to the traffic characteristics of data centers. Though frame-level traffic splitting can achieve optimal load balance and the maximum benefits from aggregated capacity, it is generally deprecated in most cases because of frame disordering which can disrupt the operation of many Internet protocols, most notably transmission control protocol (TCP). To address this issue, we first investigate the causes of frame disordering in link aggregation and find that all of them either are no longer true or can be prevented in data centers. Then we present a byte-counter frame-level traffic splitting algorithm which achieves optimal performance while causes no frame disordering. The only requirement is that frames in a flow are the same size which can be easily met in data centers. Simulation results show that the proposed frame-level traffic splitting method could achieve higher throughput and optimal load balance. The average completion time of different sized flows is reduced by 24% on average and by up to 46%.
文摘高位滑坡对建筑集群的冲击破坏时常导致严重的人员伤亡,基于光滑粒子流体动力学-离散元法-有限元法(smoothed particle hydrodynamics-discrete element method-finite element method,SPH-DEM-FEM)耦合的数值模型,开展了高位滑坡对框架结构建筑群的冲击过程、建筑结构破坏机理、冲击力时程与框架柱关键点应力和弯矩等动力机制研究。研究结果表明:SPH-DEM-FEM耦合数值方法能够有效地模拟碎石土滑坡中土(SPH)石(DEM)混合物的抛射弹跳、爬高绕流冲击运动过程。考虑了常规建筑垂直、平行于滑坡流向的三排建筑组合布局,位于滑坡近端的纵向排列建筑表现为连续性倾倒破坏,横向排列的建筑则呈现整体倾倒破坏;因前排建筑群对滑坡冲击能量的耗散及滑坡自身摩擦耗能,位于滑坡后端建筑表现为引流面墙体和前排柱发生局部破坏,结构保持稳定,损毁程度依次为上游无建筑缓冲耗能的建筑>有横向排列的建筑>有纵向排列的建筑;纵向、横向排列的建筑冲击力衰减幅度分别31%、21%。横向框架建筑整体倾倒的损毁机制表现为框架柱的直接剪断或节点塑形铰链失效;纵向框架建筑连续性倾倒的损毁机制表现为前排框架柱的失效引起后排框架柱轴向压力和极限弯矩增加,持续冲击荷载超过其极限弯矩致使后排框架柱发生弯曲破坏,最终结构倾倒。系统能量在动能、内能和摩擦耗能间转化,其中摩擦耗能占65.5%,结构耗能占23.6%,动能快速下降与内能急剧增加是建筑破坏的关键特征。