12%difenoconazole+fluxapyroxad SC(commercial name:Jiangong)was first released by BASF in China in 2016.It has been registered to control many diseases,including pear scab,apple Alternaria leaf spot,tomato early blight...12%difenoconazole+fluxapyroxad SC(commercial name:Jiangong)was first released by BASF in China in 2016.It has been registered to control many diseases,including pear scab,apple Alternaria leaf spot,tomato early blight,cucumber powdery mildew,etc.This study evaluated the bioactivity of Jiangong against Alternaria alternata and explored variations of phyllosphere microorganisms in both asymptomatic and tobacco brown spot leaves at different persistence periods(0,5,10,and 15 days post-fungicide application)using high-throughput sequencing technology.The results indicated that Jiangong effectively inhibited mycelial growth(average EC_(50) value of 0.51μg/mL),conidia germination(average EC_(50) value of 3.47μg/mL),and the carbon metabolism of A.alternata.Both asymptomatic and symptomatic leaves presented complex microbial communities.Higher fungal diversity was noted in asymptomatic leaves,while higher bacterial diversity was found in symptomatic leaves.After application,the diversity and abundance of microbial community structures in both types of leaves changed over time.Fungal microbiome communities showed greater sensitivity than bacterial groups,with the microbiome communities of asymptomatic leaves being more affected than those of symptomatic leaves.Fungal community diversity decreased for both symptomatic and asymptomatic leaves after 5 days of application,while the diversity of fungal community in symptomatic leaves showed an upward trend after 10 days of application.Meanwhile,bacterial community diversity increased in both symptomatic and asymptomatic leaves after 5 days of application but then declined in asymptomatic leaves after 15 days.The abundance of the dominant function group of phyllosphere bacteria(metabolism,genetic information processing,environmental information processing)was not affected by the application of Jiangong.However,the abundance of the dominant function group of phyllosphere fungi(animal pathogen-endophyte-wood saprotroph,endophyte-plant pathogen,plant pathogen-undefined saprotroph)was significantly affected by the application of Jiangong,and high variation was found in symptomatic leaves than that of asymptomatic leaves.The application of Jiangong-induced alterations in the community structure of the tobacco phyllosphere microbiome provides a basis for future tobacco brown spot control strategies based on phyllospheric microecology.展开更多
The aim of this work was to assess the effect of applying three different doses of fluxapyroxad on microbial activity, community structure and functional diversity as measured by respiration, microbial biomass C, phos...The aim of this work was to assess the effect of applying three different doses of fluxapyroxad on microbial activity, community structure and functional diversity as measured by respiration, microbial biomass C, phospholipid fatty acid (PLFA) and community-level physiological profiles (CLPPs). Our results demonstrated that substrate-induced respiration (on day 15) and microbial biomass C (on days 7 and 15) were inhibited by fiuxapyroxad, but stimulation was observed thereafter. In contrast, fluxapyroxad addition increased the basal respiration and metabolic quotients (qCO2) and respiratory quotients (QR). Analysis of the PLFA profiles revealed that the total and bacterial biomass (both Gram-positive bacteria (GP) and Gram-negative bacteria (GN)) were decreased within the initial 15 days, whereas those as well as the GN/GP ratio were increased at days 30 and 60. Fluxapyroxad input decreased the fungi biomass but increased the bacteria/fungi ratio at all incubation time. Moreover, high fluxapyroxad input (75 mg fluxapyroxad kg-1 soil dry weight) increased the microbial stress level. A principal component analysis (PCA) of the PLFAs revealed that fluxapyroxad treatment significantly shifted the microbial community structure, but all of the observed effects were transient. Biolog results showed that average well color development (AWCD) and functional diversity index (H′) were increased only on day 60. In addition, the dissipation of fluxa- pyroxad was slow in soil, and the degradation half-lives varied from 158 to 385 days depending on the concentration tested.展开更多
[目的]制备以氟唑菌酰胺和戊唑醇两元复配的悬浮剂配方,并对该配方的田间药效进行了测定,为开发以新型杀菌剂氟唑菌酰胺为复配成分的系列悬浮剂和对辣椒早疫病的田间防治提供技术参考。[方法]配方采用单因素筛选法,筛选农药助剂包括润...[目的]制备以氟唑菌酰胺和戊唑醇两元复配的悬浮剂配方,并对该配方的田间药效进行了测定,为开发以新型杀菌剂氟唑菌酰胺为复配成分的系列悬浮剂和对辣椒早疫病的田间防治提供技术参考。[方法]配方采用单因素筛选法,筛选农药助剂包括润湿分散剂、增稠剂、防冻剂、防腐剂、消泡剂等,并测定了各项理化性质。利用湿法砂磨加工技术开发了氟唑菌酰胺·戊唑醇的最佳配方并对辣椒早疫病进行了田间药效的评价。[结果]筛选出40%氟唑菌酰胺·戊唑醇悬浮剂的最佳配方:10%氟唑菌酰胺、30%戊唑醇、3%YUS-FS3000、2%D251、0.5%YUS-TXC、1%SC-9160、0.4%硅酸镁铝、0.1%黄原胶、4%丙三醇、0.3%消泡剂AF1500、0.1%防腐剂FTRT^(®)S30,去离子水补足至100%。在田间试验中,40%氟唑菌酰胺·戊唑醇悬浮剂对辣椒早疫病表现出优异的杀菌活性,在180 g a.i./hm^(2)剂量下,7、14 d防效分别达到78.13%和82.65%。[结论]开发出的40%氟唑菌酰胺·戊唑醇悬浮剂的配方物理稳定性强、悬浮率高,各项理化指标均合格且对辣椒早疫病显示出优异的防治效果,为后续开发以杀菌剂氟唑菌酰胺为复配成分的系列悬浮剂和辣椒早疫病的防治提供了参考。展开更多
本文采用高效液相色谱法,以乙腈加0.1%磷酸水溶液为流动相,使用Eclipse Plus C 18色谱柱和二极管阵列检测器,在210nm波长下对12%氟唑菌酰胺·氟环唑乳油进行分离和定量测定。结果表明,该分析方法条件下氟唑菌酰胺和氟环唑的线性相...本文采用高效液相色谱法,以乙腈加0.1%磷酸水溶液为流动相,使用Eclipse Plus C 18色谱柱和二极管阵列检测器,在210nm波长下对12%氟唑菌酰胺·氟环唑乳油进行分离和定量测定。结果表明,该分析方法条件下氟唑菌酰胺和氟环唑的线性相关系数分别为0.9997和0.9991,标准偏差分别为0.02和0.02,变异系数分别为0.31%和0.32%,平均回收率分别为100.18%和100.44%。展开更多
[目的]探讨42.4%唑醚·氟酰胺悬浮剂对番茄叶霉病的田间防治效果。[方法]以10%苯醚甲环唑水分散粒剂和70%甲基硫菌灵可湿性粉剂为对照药剂,采用小区试验研究42.4%唑醚·氟酰胺悬浮剂对番茄叶霉病的防治效果。[结果]42.4%唑醚...[目的]探讨42.4%唑醚·氟酰胺悬浮剂对番茄叶霉病的田间防治效果。[方法]以10%苯醚甲环唑水分散粒剂和70%甲基硫菌灵可湿性粉剂为对照药剂,采用小区试验研究42.4%唑醚·氟酰胺悬浮剂对番茄叶霉病的防治效果。[结果]42.4%唑醚·氟酰胺悬浮剂在剂量为150.0~225.0 g a.i./hm2时,对番茄叶霉病的防治效果为83.37%~91.63%,与10%苯醚甲环唑水分散粒剂120.0g a.i./hm^2对番茄叶霉病的防治效果无显著差异,但显著高于70%甲基硫菌灵可湿性粉剂562.5 g a.i./hm^2的防治效果。[结论]42.4%唑醚·氟酰胺悬浮剂可广泛用于番茄叶霉病的防治。展开更多
基金Supported by China National Tobacco Corporation[No.110202101048(LS-08)]Hundred’Level Innovative Talent Foundation of Guizhou Province(No.GCC[2022]028-1,GCC[2023]108)+2 种基金Guizhou Science Technology Foundation(No.ZK[2021]Key036)the National Natural Science Foundation of China(No.32160522)Guizhou Province Applied Technology Research and Development Funding Post-subsidy Project and Guizhou Tobacco Company(No.2020XM03,2020XM22,2024XM06).
文摘12%difenoconazole+fluxapyroxad SC(commercial name:Jiangong)was first released by BASF in China in 2016.It has been registered to control many diseases,including pear scab,apple Alternaria leaf spot,tomato early blight,cucumber powdery mildew,etc.This study evaluated the bioactivity of Jiangong against Alternaria alternata and explored variations of phyllosphere microorganisms in both asymptomatic and tobacco brown spot leaves at different persistence periods(0,5,10,and 15 days post-fungicide application)using high-throughput sequencing technology.The results indicated that Jiangong effectively inhibited mycelial growth(average EC_(50) value of 0.51μg/mL),conidia germination(average EC_(50) value of 3.47μg/mL),and the carbon metabolism of A.alternata.Both asymptomatic and symptomatic leaves presented complex microbial communities.Higher fungal diversity was noted in asymptomatic leaves,while higher bacterial diversity was found in symptomatic leaves.After application,the diversity and abundance of microbial community structures in both types of leaves changed over time.Fungal microbiome communities showed greater sensitivity than bacterial groups,with the microbiome communities of asymptomatic leaves being more affected than those of symptomatic leaves.Fungal community diversity decreased for both symptomatic and asymptomatic leaves after 5 days of application,while the diversity of fungal community in symptomatic leaves showed an upward trend after 10 days of application.Meanwhile,bacterial community diversity increased in both symptomatic and asymptomatic leaves after 5 days of application but then declined in asymptomatic leaves after 15 days.The abundance of the dominant function group of phyllosphere bacteria(metabolism,genetic information processing,environmental information processing)was not affected by the application of Jiangong.However,the abundance of the dominant function group of phyllosphere fungi(animal pathogen-endophyte-wood saprotroph,endophyte-plant pathogen,plant pathogen-undefined saprotroph)was significantly affected by the application of Jiangong,and high variation was found in symptomatic leaves than that of asymptomatic leaves.The application of Jiangong-induced alterations in the community structure of the tobacco phyllosphere microbiome provides a basis for future tobacco brown spot control strategies based on phyllospheric microecology.
基金supported by the National Natural Science Foundation of China (31171879 and 31000863)the Special Fund for Agro-Scientific Research in the Public Interest, China (201203098)
文摘The aim of this work was to assess the effect of applying three different doses of fluxapyroxad on microbial activity, community structure and functional diversity as measured by respiration, microbial biomass C, phospholipid fatty acid (PLFA) and community-level physiological profiles (CLPPs). Our results demonstrated that substrate-induced respiration (on day 15) and microbial biomass C (on days 7 and 15) were inhibited by fiuxapyroxad, but stimulation was observed thereafter. In contrast, fluxapyroxad addition increased the basal respiration and metabolic quotients (qCO2) and respiratory quotients (QR). Analysis of the PLFA profiles revealed that the total and bacterial biomass (both Gram-positive bacteria (GP) and Gram-negative bacteria (GN)) were decreased within the initial 15 days, whereas those as well as the GN/GP ratio were increased at days 30 and 60. Fluxapyroxad input decreased the fungi biomass but increased the bacteria/fungi ratio at all incubation time. Moreover, high fluxapyroxad input (75 mg fluxapyroxad kg-1 soil dry weight) increased the microbial stress level. A principal component analysis (PCA) of the PLFAs revealed that fluxapyroxad treatment significantly shifted the microbial community structure, but all of the observed effects were transient. Biolog results showed that average well color development (AWCD) and functional diversity index (H′) were increased only on day 60. In addition, the dissipation of fluxa- pyroxad was slow in soil, and the degradation half-lives varied from 158 to 385 days depending on the concentration tested.
文摘[目的]制备以氟唑菌酰胺和戊唑醇两元复配的悬浮剂配方,并对该配方的田间药效进行了测定,为开发以新型杀菌剂氟唑菌酰胺为复配成分的系列悬浮剂和对辣椒早疫病的田间防治提供技术参考。[方法]配方采用单因素筛选法,筛选农药助剂包括润湿分散剂、增稠剂、防冻剂、防腐剂、消泡剂等,并测定了各项理化性质。利用湿法砂磨加工技术开发了氟唑菌酰胺·戊唑醇的最佳配方并对辣椒早疫病进行了田间药效的评价。[结果]筛选出40%氟唑菌酰胺·戊唑醇悬浮剂的最佳配方:10%氟唑菌酰胺、30%戊唑醇、3%YUS-FS3000、2%D251、0.5%YUS-TXC、1%SC-9160、0.4%硅酸镁铝、0.1%黄原胶、4%丙三醇、0.3%消泡剂AF1500、0.1%防腐剂FTRT^(®)S30,去离子水补足至100%。在田间试验中,40%氟唑菌酰胺·戊唑醇悬浮剂对辣椒早疫病表现出优异的杀菌活性,在180 g a.i./hm^(2)剂量下,7、14 d防效分别达到78.13%和82.65%。[结论]开发出的40%氟唑菌酰胺·戊唑醇悬浮剂的配方物理稳定性强、悬浮率高,各项理化指标均合格且对辣椒早疫病显示出优异的防治效果,为后续开发以杀菌剂氟唑菌酰胺为复配成分的系列悬浮剂和辣椒早疫病的防治提供了参考。
文摘本文采用高效液相色谱法,以乙腈加0.1%磷酸水溶液为流动相,使用Eclipse Plus C 18色谱柱和二极管阵列检测器,在210nm波长下对12%氟唑菌酰胺·氟环唑乳油进行分离和定量测定。结果表明,该分析方法条件下氟唑菌酰胺和氟环唑的线性相关系数分别为0.9997和0.9991,标准偏差分别为0.02和0.02,变异系数分别为0.31%和0.32%,平均回收率分别为100.18%和100.44%。
文摘[目的]探讨42.4%唑醚·氟酰胺悬浮剂对番茄叶霉病的田间防治效果。[方法]以10%苯醚甲环唑水分散粒剂和70%甲基硫菌灵可湿性粉剂为对照药剂,采用小区试验研究42.4%唑醚·氟酰胺悬浮剂对番茄叶霉病的防治效果。[结果]42.4%唑醚·氟酰胺悬浮剂在剂量为150.0~225.0 g a.i./hm2时,对番茄叶霉病的防治效果为83.37%~91.63%,与10%苯醚甲环唑水分散粒剂120.0g a.i./hm^2对番茄叶霉病的防治效果无显著差异,但显著高于70%甲基硫菌灵可湿性粉剂562.5 g a.i./hm^2的防治效果。[结论]42.4%唑醚·氟酰胺悬浮剂可广泛用于番茄叶霉病的防治。