Proportional direction valve is one of the most fundamental elements in electronic-hydraulic control technique. Its function is to control the operating speed, direction, position, and strength of output force of the ...Proportional direction valve is one of the most fundamental elements in electronic-hydraulic control technique. Its function is to control the operating speed, direction, position, and strength of output force of the hydraulic actuator continuously. Considering the different application and the cost, the existing technique mainly includes the internal feedback valve used in open loop system, and the electronic closed loop controlled valve used in closed loop system. Because of their different mechanical structure and the gre at different in performance, it brings inconvenience for customer to select, also inconvenience for enterprise to produce. Aiming at this problem, the idea of combining the above two kinds of valves into one body is proposed first, and then the new valve's structure to realize this target is designed. The idea intends to apply the displacement pilot flow feedback control principle in present 2-position 2-way valve system to the proportional direction valve of 3-position 4-way system. Newly designed feed forward controller can decouple the interference between the internal feedback and the electronic closed loop. Redundant conversion is designed to electronic switch mode. Experiment on dynamic and static characteristic of new proportional direction valve in internal feedback control mode and electronic closed loop control mode is discussed to prove the new theory is correct. Although the new valve is of excellent dynamic response characteristic, its steady control characteristic in open loop control mode needs to be improved further. The research results prepare one new fundamental element for electronic-hydraulic control technology.展开更多
The coiling temperature of the hot strip rolling process plays an important role in strip quality control. The newly-built laminar flow cooling control system was independently developed by Baosteel. L2 conducts total...The coiling temperature of the hot strip rolling process plays an important role in strip quality control. The newly-built laminar flow cooling control system was independently developed by Baosteel. L2 conducts totally dynamic control (L1 only executes the result from L2, and does not conduct any dynamic control ). The system has many advantages, such as quick real-time control, accurate model calculation, quick response after self-adaptation, etc. Compared with the 2050 mm hot strip rolling line,the new system can satisfy the strict cooling requirements of high strength steel, silicon steel and heavy plates because of its newly-developed technologies of cooling rate control, strip cooling by sections and proportion-integral-differential coefficient (PID) feedback fuzzy control.展开更多
Information feedback strategies can influence the traffic efficiency of intelligent traffic systems greatly.Based on the more practical symmetrical two-route scenario with one entrance and one exit,an improved weighte...Information feedback strategies can influence the traffic efficiency of intelligent traffic systems greatly.Based on the more practical symmetrical two-route scenario with one entrance and one exit,an improved weighted mean velocity feedback strategy(WMVFS) is proposed,which is not sensitive to the precision of global position system(GPS) devices.The applicability of WMVFS to different weight factors,aggressive probabilities,densities of dynamic vehicles,and different two-route scenarios(symmetrical scenario and asymmetrical scenario with a speed limit bottleneck) is analyzed.Results show that WMVFS achieves the best performance compared with three other information feedback strategies when considering the traffic flux and stability.展开更多
In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by th...In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.展开更多
基金supported by National Natural Science Foundation of China (Grant No. 50575156)Shanxi Provincial Natural Science Foundation of China (Grant No. 2008011053)
文摘Proportional direction valve is one of the most fundamental elements in electronic-hydraulic control technique. Its function is to control the operating speed, direction, position, and strength of output force of the hydraulic actuator continuously. Considering the different application and the cost, the existing technique mainly includes the internal feedback valve used in open loop system, and the electronic closed loop controlled valve used in closed loop system. Because of their different mechanical structure and the gre at different in performance, it brings inconvenience for customer to select, also inconvenience for enterprise to produce. Aiming at this problem, the idea of combining the above two kinds of valves into one body is proposed first, and then the new valve's structure to realize this target is designed. The idea intends to apply the displacement pilot flow feedback control principle in present 2-position 2-way valve system to the proportional direction valve of 3-position 4-way system. Newly designed feed forward controller can decouple the interference between the internal feedback and the electronic closed loop. Redundant conversion is designed to electronic switch mode. Experiment on dynamic and static characteristic of new proportional direction valve in internal feedback control mode and electronic closed loop control mode is discussed to prove the new theory is correct. Although the new valve is of excellent dynamic response characteristic, its steady control characteristic in open loop control mode needs to be improved further. The research results prepare one new fundamental element for electronic-hydraulic control technology.
文摘[目的]探究实时姿势监测与反馈系统对血流限制(blood flow restriction,BFR)下跑者下肢运动学与肌电特征的变化.[方法]17名无BFR训练经验的新手健康跑者参与3次不同方案的跑步测试.第1次测试空白条件下单纯跑步(blank running,BR)状态;第2次测试BFR下跑步(BFR and running,BFRR)状态;第3次测试BFR并进行实时姿势监测与反馈(monitoring and feedback,MF)时的跑步状态.比较3次测试中跑者下肢髋、膝、踝关节峰值活动角度与下肢主要肌肉肌电参数变化.[结果]与BR方案相比,BFRR方案下跑者下肢关节峰值角度显著增加,肌肉激活程度与肌纤维募集频率范围也显著增加.使用实时姿势监测与反馈后,与BFRR方案相比,BFRR+MF方案下跑者下肢关节峰值活动角度与上述肌电参数显著下降.[结论]BFR训练将导致跑者初次应用时表现出过激运动表现,但实时监测与反馈系统将优化运动表现,降低运动损伤风险.
文摘The coiling temperature of the hot strip rolling process plays an important role in strip quality control. The newly-built laminar flow cooling control system was independently developed by Baosteel. L2 conducts totally dynamic control (L1 only executes the result from L2, and does not conduct any dynamic control ). The system has many advantages, such as quick real-time control, accurate model calculation, quick response after self-adaptation, etc. Compared with the 2050 mm hot strip rolling line,the new system can satisfy the strict cooling requirements of high strength steel, silicon steel and heavy plates because of its newly-developed technologies of cooling rate control, strip cooling by sections and proportion-integral-differential coefficient (PID) feedback fuzzy control.
基金Project supported by the Ph. D. Programs Foundation of the Ministry of Education of China (Grant No. 20093108110019)
文摘Information feedback strategies can influence the traffic efficiency of intelligent traffic systems greatly.Based on the more practical symmetrical two-route scenario with one entrance and one exit,an improved weighted mean velocity feedback strategy(WMVFS) is proposed,which is not sensitive to the precision of global position system(GPS) devices.The applicability of WMVFS to different weight factors,aggressive probabilities,densities of dynamic vehicles,and different two-route scenarios(symmetrical scenario and asymmetrical scenario with a speed limit bottleneck) is analyzed.Results show that WMVFS achieves the best performance compared with three other information feedback strategies when considering the traffic flux and stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11372166,11372147,61074142,and 11072117)the Scientific Research Fund of Zhejiang Province,China(Grant No.LY13A010005)+1 种基金the Disciplinary Project of Ningbo City,China(Grant No.SZXL1067)the K.C.Wong Magna Fund in Ningbo University,China,and the Government of the Hong Kong Administrative Region,China(Grant No.119011)
文摘In light of previous work [Phys. Rev. E 60 4000 (1999)], a modified coupled-map car-following model is proposed by considering the headways of two successive vehicles in front of a considered vehicle described by the optimal velocity function. The non-jam conditions are given on the basis of control theory. Through simulation, we find that our model can exhibit a better effect as p = 0.65, which is a parameter in the optimal velocity function. The control scheme, which was proposed by Zhao and Gao, is introduced into the modified model and the feedback gain range is determined. In addition, a modified control method is applied to a mixed traffic system that consists of two types of vehicle. The range of gains is also obtained by theoretical analysis. Comparisons between our method and that of Zhao and Gao are carried out, and the corresponding numerical simulation results demonstrate that the temporal behavior of traffic flow obtained using our method is better than that proposed by Zhao and Gao in mixed traffic systems.