期刊文献+
共找到3,856篇文章
< 1 2 193 >
每页显示 20 50 100
Synaptic pruning mechanisms and application of emerging imaging techniques in neurological disorders
1
作者 Yakang Xing Yi Mo +1 位作者 Qihui Chen Xiao Li 《Neural Regeneration Research》 2026年第5期1698-1714,共17页
Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience... Synaptic pruning is a crucial process in synaptic refinement,eliminating unstable synaptic connections in neural circuits.This process is triggered and regulated primarily by spontaneous neural activity and experience-dependent mechanisms.The pruning process involves multiple molecular signals and a series of regulatory activities governing the“eat me”and“don't eat me”states.Under physiological conditions,the interaction between glial cells and neurons results in the clearance of unnecessary synapses,maintaining normal neural circuit functionality via synaptic pruning.Alterations in genetic and environmental factors can lead to imbalanced synaptic pruning,thus promoting the occurrence and development of autism spectrum disorder,schizophrenia,Alzheimer's disease,and other neurological disorders.In this review,we investigated the molecular mechanisms responsible for synaptic pruning during neural development.We focus on how synaptic pruning can regulate neural circuits and its association with neurological disorders.Furthermore,we discuss the application of emerging optical and imaging technologies to observe synaptic structure and function,as well as their potential for clinical translation.Our aim was to enhance our understanding of synaptic pruning during neural development,including the molecular basis underlying the regulation of synaptic function and the dynamic changes in synaptic density,and to investigate the potential role of these mechanisms in the pathophysiology of neurological diseases,thus providing a theoretical foundation for the treatment of neurological disorders. 展开更多
关键词 CHEMOKINE COMPLEMENT experience-dependent driven synaptic pruning imaging techniques NEUROGLIA signaling pathways synapse elimination synaptic pruning
暂未订购
SFPBL:Soft Filter Pruning Based on Logistic Growth Differential Equation for Neural Network
2
作者 Can Hu Shanqing Zhang +2 位作者 Kewei Tao Gaoming Yang Li Li 《Computers, Materials & Continua》 2025年第3期4913-4930,共18页
The surge of large-scale models in recent years has led to breakthroughs in numerous fields,but it has also introduced higher computational costs and more complex network architectures.These increasingly large and int... The surge of large-scale models in recent years has led to breakthroughs in numerous fields,but it has also introduced higher computational costs and more complex network architectures.These increasingly large and intricate networks pose challenges for deployment and execution while also exacerbating the issue of network over-parameterization.To address this issue,various network compression techniques have been developed,such as network pruning.A typical pruning algorithm follows a three-step pipeline involving training,pruning,and retraining.Existing methods often directly set the pruned filters to zero during retraining,significantly reducing the parameter space.However,this direct pruning strategy frequently results in irreversible information loss.In the early stages of training,a network still contains much uncertainty,and evaluating filter importance may not be sufficiently rigorous.To manage the pruning process effectively,this paper proposes a flexible neural network pruning algorithm based on the logistic growth differential equation,considering the characteristics of network training.Unlike other pruning algorithms that directly reduce filter weights,this algorithm introduces a three-stage adaptive weight decay strategy inspired by the logistic growth differential equation.It employs a gentle decay rate in the initial training stage,a rapid decay rate during the intermediate stage,and a slower decay rate in the network convergence stage.Additionally,the decay rate is adjusted adaptively based on the filter weights at each stage.By controlling the adaptive decay rate at each stage,the pruning of neural network filters can be effectively managed.In experiments conducted on the CIFAR-10 and ILSVRC-2012 datasets,the pruning of neural networks significantly reduces the floating-point operations while maintaining the same pruning rate.Specifically,when implementing a 30%pruning rate on the ResNet-110 network,the pruned neural network not only decreases floating-point operations by 40.8%but also enhances the classification accuracy by 0.49%compared to the original network. 展开更多
关键词 Filter pruning channel pruning CNN complexity deep neural networks filtering theory logistic model
在线阅读 下载PDF
Hierarchical Shape Pruning for 3D Sparse Convolution Networks
3
作者 Haiyan Long Chonghao Zhang +2 位作者 Xudong Qiu Hai Chen Gang Chen 《Computers, Materials & Continua》 2025年第8期2975-2988,共14页
3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Des... 3D sparse convolution has emerged as a pivotal technique for efficient voxel-based perception in autonomous systems,enabling selective feature extraction from non-empty voxels while suppressing computational waste.Despite its theoretical efficiency advantages,practical implementations face under-explored limitations:the fixed geometric patterns of conventional sparse convolutional kernels inevitably process non-contributory positions during sliding-window operations,particularly in regions with uneven point cloud density.To address this,we propose Hierarchical Shape Pruning for 3D Sparse Convolution(HSP-S),which dynamically eliminates redundant kernel stripes through layer-adaptive thresholding.Unlike static soft pruning methods,HSP-S maintains trainable sparsity patterns by progressively adjusting pruning thresholds during optimization,enlarging original parameter search space while removing redundant operations.Extensive experiments validate effectiveness of HSP-S acrossmajor autonomous driving benchmarks.On KITTI’s 3D object detection task,our method reduces 93.47%redundant kernel computations whilemaintaining comparable accuracy(1.56%mAP drop).Remarkably,on themore complexNuScenes benchmark,HSP-S achieves simultaneous computation reduction(21.94%sparsity)and accuracy gains(1.02%mAP(mean Average Precision)and 0.47%NDS(nuScenes detection score)improvement),demonstrating its scalability to diverse perception scenarios.This work establishes the first learnable shape pruning framework that simultaneously enhances computational efficiency and preserves detection accuracy in 3D perception systems. 展开更多
关键词 Shape pruning model compressing 3D sparse convolution
在线阅读 下载PDF
Computation graph pruning based on critical path retention in evolvable networks
4
作者 XIE Xiaoyan YANG Tianjiao +4 位作者 ZHU Yun LUO Xing JIN Luochen YU Jinhao REN Xun 《High Technology Letters》 2025年第3期266-272,共7页
The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heig... The dynamic routing mechanism in evolvable networks enables adaptive reconfiguration of topol-ogical structures and transmission pathways based on real-time task requirements and data character-istics.However,the heightened architectural complexity and expanded parameter dimensionality in evolvable networks present significant implementation challenges when deployed in resource-con-strained environments.Due to the critical paths ignored,traditional pruning strategies cannot get a desired trade-off between accuracy and efficiency.For this reason,a critical path retention pruning(CPRP)method is proposed.By deeply traversing the computational graph,the dependency rela-tionship among nodes is derived.Then the nodes are grouped and sorted according to their contribu-tion value.The redundant operations are removed as much as possible while ensuring that the criti-cal path is not affected.As a result,computational efficiency is improved while a higher accuracy is maintained.On the CIFAR benchmark,the experimental results demonstrate that CPRP-induced pruning incurs accuracy degradation below 4.00%,while outperforming traditional feature-agnostic grouping methods by an average 8.98%accuracy improvement.Simultaneously,the pruned model attains a 2.41 times inference acceleration while achieving 48.92%parameter compression and 53.40%floating-point operations(FLOPs)reduction. 展开更多
关键词 evolvable network computation graph traversing dynamic routing critical path retention pruning
在线阅读 下载PDF
Optimizing BERT for Bengali Emotion Classification: Evaluating Knowledge Distillation, Pruning, and Quantization
5
作者 Md Hasibur Rahman Mohammed Arif Uddin +1 位作者 Zinnat Fowzia Ria Rashedur M.Rahman 《Computer Modeling in Engineering & Sciences》 2025年第2期1637-1666,共30页
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati... The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classification.However,BERT’s size and computational demands limit its practicality,especially in resource-constrained settings.This research compresses the BERT base model for Bengali emotion classification through knowledge distillation(KD),pruning,and quantization techniques.Despite Bengali being the sixth most spoken language globally,NLP research in this area is limited.Our approach addresses this gap by creating an efficient BERT-based model for Bengali text.We have explored 20 combinations for KD,quantization,and pruning,resulting in improved speedup,fewer parameters,and reduced memory size.Our best results demonstrate significant improvements in both speed and efficiency.For instance,in the case of mBERT,we achieved a 3.87×speedup and 4×compression ratio with a combination of Distil+Prune+Quant that reduced parameters from 178 to 46 M,while the memory size decreased from 711 to 178 MB.These results offer scalable solutions for NLP tasks in various languages and advance the field of model compression,making these models suitable for real-world applications in resource-limited environments. 展开更多
关键词 Bengali NLP black-box distillation emotion classification model compression post-training quantization unstructured pruning
在线阅读 下载PDF
CLAD:Criterion learner and attention distillation for automated CNN pruning
6
作者 Zheng Li Jiaxin Li +2 位作者 Shaojie Liu Bo Zhao Derong Liu 《Journal of Automation and Intelligence》 2025年第4期254-265,共12页
Filter pruning effectively compresses the neural network by reducing both its parameters and computational cost.Existing pruning methods typically rely on pre-designed pruning criteria to measure filter importance and... Filter pruning effectively compresses the neural network by reducing both its parameters and computational cost.Existing pruning methods typically rely on pre-designed pruning criteria to measure filter importance and remove those deemed unimportant.However,different layers of the neural network exhibit varying filter distributions,making it inappropriate to implement the same pruning criterion for all layers.Additionally,some approaches apply different criteria from the set of pre-defined pruning rules for different layers,but the limited space leads to the difficulty of covering all layers.If criteria for all layers are manually designed,it is costly and difficult to generalize to other networks.To solve this problem,we present a novel neural network pruning method based on the Criterion Learner and Attention Distillation(CLAD).Specifically,CLAD develops a differentiable criterion learner,which is integrated into each layer of the network.The learner can automatically learn the appropriate pruning criterion according to the filter parameters of each layer,thus the requirement of manual design is eliminated.Furthermore,the criterion learner is trained end-to-end by the gradient optimization algorithm to achieve efficient pruning.In addition,attention distillation,which fully utilizes the knowledge of unpruned networks to guide the optimization of the learner and improve the pruned network performance,is introduced in the process of learner optimization.Experiments conducted on various datasets and networks demonstrate the effectiveness of the proposed method.Notably,CLAD reduces the FLOPs of Res Net-110 by about 53%on the CIFAR-10 dataset,while simultaneously improves the network's accuracy by 0.05%.Moreover,it reduces the FLOPs of Res Net-50 by about 46%on the Image Net-1K dataset,and maintains a top-1 accuracy of 75.45%. 展开更多
关键词 Neural network pruning Model compression Knowledge distillation Feature attention Polar regularization
在线阅读 下载PDF
Greedy Pruning Algorithm for DETR Architecture Networks Based on Global Optimization
7
作者 HUANG Qiubo XU Jingsai +2 位作者 ZHANG Yakui WANG Mei CHEN Dehua 《Journal of Donghua University(English Edition)》 2025年第1期96-105,共10页
End-to-end object detection Transformer(DETR)successfully established the paradigm of the Transformer architecture in the field of object detection.Its end-to-end detection process and the idea of set prediction have ... End-to-end object detection Transformer(DETR)successfully established the paradigm of the Transformer architecture in the field of object detection.Its end-to-end detection process and the idea of set prediction have become one of the hottest network architectures in recent years.There has been an abundance of work improving upon DETR.However,DETR and its variants require a substantial amount of memory resources and computational costs,and the vast number of parameters in these networks is unfavorable for model deployment.To address this issue,a greedy pruning(GP)algorithm is proposed,applied to a variant denoising-DETR(DN-DETR),which can eliminate redundant parameters in the Transformer architecture of DN-DETR.Considering the different roles of the multi-head attention(MHA)module and the feed-forward network(FFN)module in the Transformer architecture,a modular greedy pruning(MGP)algorithm is proposed.This algorithm separates the two modules and applies their respective optimal strategies and parameters.The effectiveness of the proposed algorithm is validated on the COCO 2017 dataset.The model obtained through the MGP algorithm reduces the parameters by 49%and the number of floating point operations(FLOPs)by 44%compared to the Transformer architecture of DN-DETR.At the same time,the mean average precision(mAP)of the model increases from 44.1%to 45.3%. 展开更多
关键词 model pruning object detection Transformer(DETR) Transformer architecture object detection
在线阅读 下载PDF
A Novel Reduced Error Pruning Tree Forest with Time-Based Missing Data Imputation(REPTF-TMDI)for Traffic Flow Prediction
8
作者 Yunus Dogan Goksu Tuysuzoglu +4 位作者 Elife Ozturk Kiyak Bita Ghasemkhani Kokten Ulas Birant Semih Utku Derya Birant 《Computer Modeling in Engineering & Sciences》 2025年第8期1677-1715,共39页
Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a sign... Accurate traffic flow prediction(TFP)is vital for efficient and sustainable transportation management and the development of intelligent traffic systems.However,missing data in real-world traffic datasets poses a significant challenge to maintaining prediction precision.This study introduces REPTF-TMDI,a novel method that combines a Reduced Error Pruning Tree Forest(REPTree Forest)with a newly proposed Time-based Missing Data Imputation(TMDI)approach.The REP Tree Forest,an ensemble learning approach,is tailored for time-related traffic data to enhance predictive accuracy and support the evolution of sustainable urbanmobility solutions.Meanwhile,the TMDI approach exploits temporal patterns to estimate missing values reliably whenever empty fields are encountered.The proposed method was evaluated using hourly traffic flow data from a major U.S.roadway spanning 2012-2018,incorporating temporal features(e.g.,hour,day,month,year,weekday),holiday indicator,and weather conditions(temperature,rain,snow,and cloud coverage).Experimental results demonstrated that the REPTF-TMDI method outperformed conventional imputation techniques across various missing data ratios by achieving an average 11.76%improvement in terms of correlation coefficient(R).Furthermore,REPTree Forest achieved improvements of 68.62%in RMSE and 70.52%in MAE compared to existing state-of-the-art models.These findings highlight the method’s ability to significantly boost traffic flow prediction accuracy,even in the presence of missing data,thereby contributing to the broader objectives of sustainable urban transportation systems. 展开更多
关键词 Machine learning traffic flow prediction missing data imputation reduced error pruning tree(REPTree) sustainable transportation systems traffic management artificial intelligence
在线阅读 下载PDF
立木攀爬修枝机器人设计与试验
9
作者 周志标 蒙丽雯 +1 位作者 郑贤 蒙艳玫 《农机化研究》 北大核心 2026年第2期1-10,共10页
立木在生长过程中保留过多的分枝会导致树势早衰,同时树枝生长过大会在树干内形成死节,进而影响树木成材。为了对立木进行自动化修枝,使修枝人员远离危险的修枝环境,设计了一种可定点修枝的立木攀爬修枝机器人。首先,确定了攀爬机构采... 立木在生长过程中保留过多的分枝会导致树势早衰,同时树枝生长过大会在树干内形成死节,进而影响树木成材。为了对立木进行自动化修枝,使修枝人员远离危险的修枝环境,设计了一种可定点修枝的立木攀爬修枝机器人。首先,确定了攀爬机构采用直行攀爬、修枝机构采用旋转修枝的设计方案,并通过SolidWorks软件完成了整机的虚拟样机设计;其次,对关键部件的基本结构参数和工作参数进行了计算,完成了关键零部件的选型,并求解了修枝机构中滑台调节距离和环轨旋转角度的方程式;最后,完成物理样机的加工和装配,并搭建了试验平台,对机器人的攀爬性能和修枝性能进行了验证。结果表明:机器人能够克服摩擦阻力、机器人重力和加速阻力沿模拟树干稳定攀爬,最高攀爬速度约为1.18 m/s,打滑率约为6.11%;适合在直径80~230 mm的树干上进行攀爬和修枝作业;可修剪树枝的最大直径约为40 mm,修枝后切口平整度达75%以上,残留的枝茬长度约为5 mm,证明了机器人设计的功能性和可行性。 展开更多
关键词 立木 攀爬修枝机器人 定点修枝
在线阅读 下载PDF
基于小规模异构语言模型一致性委员会的数据剪枝方法
10
作者 王凯文 王蕴哲 +3 位作者 谈威 傅启明 陆悠 陈建平 《计算机应用研究》 北大核心 2026年第1期110-119,共10页
大型语言模型(LLMs)的微调效果高度依赖于训练数据的质量,但现有的基于单模型困惑度的数据评估方法存在困惑度偏差(低困惑度样本可能仍被错误预测)和跨模型分歧(不同模型对同一样本的困惑度不一致)的局限性。为此,该研究提出了一种基于... 大型语言模型(LLMs)的微调效果高度依赖于训练数据的质量,但现有的基于单模型困惑度的数据评估方法存在困惑度偏差(低困惑度样本可能仍被错误预测)和跨模型分歧(不同模型对同一样本的困惑度不一致)的局限性。为此,该研究提出了一种基于异构小语言模型委员会一致性的方法,从两个方面评估数据价值:一方面计算多模型对同一数据样本的困惑度的变异系数来量化模型间分歧;另一方面结合预测结果与基准答案的相似性来计算预测难度。综合这两方面的评估结果,提出MMCS(多模型一致性)指标,用于高质量训练数据筛选。实验结果表明,基于MMCS筛选的数据在两种主流LLM和三个公开数据集上的微调性能优于传统方法,在36次对比实验中有27次取得最优效果,为高效数据剪枝提供了新的思路,证实了基于多模型分歧的评估方法在提升数据边际效益方面的有效性。 展开更多
关键词 大语言模型 数据修剪 多模型委员会 困惑度
在线阅读 下载PDF
复配益生元缓解便秘效果和途径探究
11
作者 蔡华昊 刘运柱 +5 位作者 朱胜男 王榕 李乾乾 张莉 王琳琳 崔树茂 《食品工业科技》 北大核心 2026年第1期420-432,共13页
目的:便秘是一种常见的功能性胃肠疾病,需要可持续且无副作用的缓解手段。方法:本研究采用洛哌丁胺诱导小鼠便秘模型,评估了复配益生元对便秘的缓解作用。研究首先考察了复配益生元对便秘表观指标的影响,后续进一步对便秘相关胃肠调节... 目的:便秘是一种常见的功能性胃肠疾病,需要可持续且无副作用的缓解手段。方法:本研究采用洛哌丁胺诱导小鼠便秘模型,评估了复配益生元对便秘的缓解作用。研究首先考察了复配益生元对便秘表观指标的影响,后续进一步对便秘相关胃肠调节递质、肠道屏障系统、结肠组织损伤情况、粪便内短链脂肪酸含量和肠道菌群进行了检测。结果:复配益生元可以通过下调有害菌Bilophila、Anaerovorax的相对丰度,上调有益菌Ileibacterium、Bifidobacterium的相对丰度,从而上调结肠内兴奋性胃肠调节递质含量(胃泌素和P物质),改善肠道屏障系统(上调粘蛋白2、闭锁蛋白、干细胞因子表达量,下调水通道蛋白3 mRNA相对表达量),改善结肠组织损伤,上调粪便中乙酸、丁酸含量,最终下调排首粒黑便时间(相比模型组缩短了27%),增加粪便含水量(相比模型组增加了46%),有效缓解便秘。而复配益生元与西梅汁复配后可以进一步上调有益菌Odoribacter、Faecalibaculum、Defluviitaleaceae_UCG-011的相对丰度,进一步上调结肠内胃泌素、胃动素含量,下调结肠内降钙素基因相关肽含量,上调粘蛋白2 mRNA相对表达量,上调粪便中乙酸、丁酸含量,增加小肠推进率(相比模型组增加了47%)和5 h内排便量(相比模型组增加了132%),从而更有效地缓解便秘。结论:复配益生元(每100 mL中主要含有低聚木糖3 g、水苏糖3 g、低聚半乳糖8 g)可缓解便秘,益生元与西梅汁复配后可以通过增强小肠推进率和提高菌群调节能力进而更有效地缓解便秘。本研究发现了西梅汁可以增强益生元缓解便秘的功效,为多种类低剂量益生元配方的开发提供了数据支持,为后续开发新型便秘缓解策略提供了科学依据。 展开更多
关键词 便秘 益生元 西梅汁 胃肠调节递质 肠道机械屏障 肠道菌群
在线阅读 下载PDF
蓝靛果修剪管理技术
12
作者 张利军 黄宏 +3 位作者 霍俊伟 秦栋 郭良川 石德山 《防护林科技》 2026年第1期84-87,共4页
基于10余年蓝靛果(Lonicera caerulea)栽培管理实践与推广示范经验,以鲜食新品种“蓝精灵”为研究对象,紧扣其物候期特征及品种特异性,系统解析蓝靛果全生育期修剪技术。聚焦苗木定植、树势培育、盛果期调控到衰老期更新的完整生产周期... 基于10余年蓝靛果(Lonicera caerulea)栽培管理实践与推广示范经验,以鲜食新品种“蓝精灵”为研究对象,紧扣其物候期特征及品种特异性,系统解析蓝靛果全生育期修剪技术。聚焦苗木定植、树势培育、盛果期调控到衰老期更新的完整生产周期,提炼出各关键环节(包括幼树整形、结果枝组培养、负载量平衡和老弱树复壮等)的标准化修剪方案。成果以科普化语言阐释专业操作细节,为种植户、技术推广人员提供精准参考。 展开更多
关键词 蓝靛果 物候期 修剪
在线阅读 下载PDF
基于剪枝的YOLOv8轻量化苹果表面缺陷检测算法
13
作者 刘鹏扬 亚森江·木沙 《中国农机化学报》 北大核心 2026年第1期108-117,共10页
在苹果表面缺陷检测中,快速且高精度的检测技术至关重要。当前的研究在精度上取得进展,但推理速度仍然有待提升,为此,提出一种基于剪枝的轻量化苹果表面缺陷检测算法。采用YOLOv8n为基础模型,结合GhostNetV2与YOLOv8结构中C2f的特性,设... 在苹果表面缺陷检测中,快速且高精度的检测技术至关重要。当前的研究在精度上取得进展,但推理速度仍然有待提升,为此,提出一种基于剪枝的轻量化苹果表面缺陷检测算法。采用YOLOv8n为基础模型,结合GhostNetV2与YOLOv8结构中C2f的特性,设计一种C2f—GhostV2模块,显著减少模型参数量并加快推理速度。为进一步减小计算负荷,模型引入幽灵卷积(GhostConv)代替传统卷积,并采用动态上采样(DySample)机制提升灵活性与信息保留能力。此外,轻量化模型经过基于层自适应幅度的剪枝(LAMP),进一步减少浮点运算量。结果表明,剪枝后的模型平均精度均值达到97.3%,与原模型相比,浮点运算次数减少78.05%,推理速度提高27.85%。 展开更多
关键词 苹果 表面缺陷检测 轻量化 剪枝 小目标检测
在线阅读 下载PDF
面向可重构结构的CNN模型混合压缩方法
14
作者 刘朋飞 蒋林 +1 位作者 李远成 吴海 《现代电子技术》 北大核心 2026年第1期167-173,共7页
随着卷积神经网络规模的不断扩大,其参数量和计算量显著增加,导致硬件面临严重的访存瓶颈,限制了计算效率。为解决这一问题,文中提出一种面向可重构结构的CNN混合压缩新方法,该方法采用先剪枝后量化的策略,通过基于一阶泰勒展开的滤波... 随着卷积神经网络规模的不断扩大,其参数量和计算量显著增加,导致硬件面临严重的访存瓶颈,限制了计算效率。为解决这一问题,文中提出一种面向可重构结构的CNN混合压缩新方法,该方法采用先剪枝后量化的策略,通过基于一阶泰勒展开的滤波器剪枝、基于阈值的全连接层权值剪枝和混合精度自适应量化策略,来减少模型参数量和计算复杂度,并部署在自研的可重构处理器上。实验结果表明,所提方法在VGG16和ResNet18模型上分别实现了31.4倍和7.9倍的压缩比,精度仅下降1.20%和0.74%。在基于VirtexUltraScale VU440 FPGA开发板搭建的可重构阵列处理器上,压缩后的VGG16模型执行周期最大降低了62.7%。证明所提方法适合资源有限的边缘计算设备。 展开更多
关键词 卷积神经网络 模型压缩 结构化剪枝 自适应量化 并行计算 可重构结构
在线阅读 下载PDF
BurdenNet:先验信息导引的复杂环境下高炉多态料面目标检测网络
15
作者 倪梓明 陈先中 +1 位作者 侯庆文 张洁 《工程科学学报》 北大核心 2026年第1期26-38,共13页
传统的单一状态料面目标检测网络未能考虑高炉冶炼状态的交替变化,在复杂环境下整体准确度较低,针对上述问题,本文提出一种先验信息导引的多态料面目标检测网络BurdenNet.首先,提出基于原始信号距离向精度的图像预分类方法,构建三类典... 传统的单一状态料面目标检测网络未能考虑高炉冶炼状态的交替变化,在复杂环境下整体准确度较低,针对上述问题,本文提出一种先验信息导引的多态料面目标检测网络BurdenNet.首先,提出基于原始信号距离向精度的图像预分类方法,构建三类典型状态的料面图像数据集,并以预分类的状态为先验信息对网络通路进行剪枝.其次,将料面细长低曲率的形状特征与雷达采样信号的稀疏性质作为先验信息,提出空洞垂直偏移卷积(Atrous vertical deformable convolution,AVDC)模块提取多态料面特征.在此基础上,利用机械探尺数据构建先验空间注意力特征图,提出先验聚焦注意力(Prior focusing attention,PFA)模块,使网络优先聚焦于图像中的料面区域.最后对于边界框的回归,提出条带交并比(Band intersection over union,BIOU)损失函数进一步提升目标检测的速度与准确性.在钢铁公司高炉的实测数据上进行实验,结果表明,本文的BurdenNet相较于单一状态目标检测网络,在多态料面数据集上整体精确率提升了13.9%与5.2%,综合性能(F1-Score)提升了8.1%与4.3%,为复杂环境下多态料面图像的目标检测提供更准确的方法. 展开更多
关键词 多态料面 先验信息 空洞垂直偏移卷积 先验聚焦注意力 网络剪枝
在线阅读 下载PDF
面向生态园林作业的单向电机驱动修枝装备设计与性能
16
作者 于少轩 马婧尧 +1 位作者 孟兆新 栗欣 《森林工程》 北大核心 2026年第1期184-195,共12页
随着生态园林养护需求的增加,修枝作业装备在效率、稳定性与环保性上面临新的挑战。为此,设计一种基于单向电机驱动的高效修枝装备。该设计通过优化传动系统并采用定制丝杠螺母结构,实现电机单向旋转即可完成剪切与复位动作,避免传统修... 随着生态园林养护需求的增加,修枝作业装备在效率、稳定性与环保性上面临新的挑战。为此,设计一种基于单向电机驱动的高效修枝装备。该设计通过优化传动系统并采用定制丝杠螺母结构,实现电机单向旋转即可完成剪切与复位动作,避免传统修枝机械对电机反转的依赖。采用有限元分析对剪切部件和传动系统进行静力学与动力学验证,确保其强度和刚度满足长期作业需求。结果表明,电机-丝杠在最不利静力工况下的需求推力上限约为650 N(设计基准);在所设定的动力学仿真工况下峰值推力约为380 N,满足剪切与复位需求并具备裕量;通过一系列剪切试验,评估该装备在不同树枝直径下的工作性能。该装备在效率和能耗方面均优于传统手工工具和常见电动修枝机,具有良好的连续作业能力和节能特性,能够适用于生态园林养护场景,满足生态园林作业的高效需求。 展开更多
关键词 生态园林 单向电机驱动 修枝装备 有限元分析 运动学解算
在线阅读 下载PDF
改进的基于FFT pruning的窄带高分辨率频谱算法 被引量:3
17
作者 王琰 万群 杨万麟 《计算机工程与应用》 CSCD 北大核心 2007年第26期54-55,141,共3页
提出一种改进的基于FFT pruning的窄带高分辨率频谱计算方法。该方法是对Sreenivas's FFT pruning算法和Nagai的利用频移变换的FFT pruning算法的推广。同时提出输出点分级思想,可实现任意窄带上非2的整数幂次频点输出。该算法比Sre... 提出一种改进的基于FFT pruning的窄带高分辨率频谱计算方法。该方法是对Sreenivas's FFT pruning算法和Nagai的利用频移变换的FFT pruning算法的推广。同时提出输出点分级思想,可实现任意窄带上非2的整数幂次频点输出。该算法比Sreenivas's FFT pruning算法具有更小的计算量和更简单的信号流图。 展开更多
关键词 FFT pruning 窄带 频移
在线阅读 下载PDF
FIREproof:Intricacies of microglial biology
18
作者 Wei Cao 《Neural Regeneration Research》 2026年第2期663-664,共2页
Microglia are the macrophages that populate the brain parenchyma.Research in the past decades has identified them as both essential guardians of the brain and significant contributors to various neurological diseases.... Microglia are the macrophages that populate the brain parenchyma.Research in the past decades has identified them as both essential guardians of the brain and significant contributors to various neurological diseases.A highly versatile cell type,microglia have been shown to fulfill a multitude of critical roles in the central nervous system,including facilitating neurogenesis and myelination,pruning synapses,removing debris and waste,modulating neuronal activity,supporting the blood-brain barrier,repairing tissue damage,and surveilling against microbial invasions under physiological conditions(Prinz et al.,2021;Paolicelli et al.,2022). 展开更多
关键词 neurological diseases facilitating neurogenesis debris removal central nervous systemincluding NEUROGENESIS MYELINATION synapse pruning brain
暂未订购
休眠期枣树枝条切割特性试验研究
19
作者 马保建 陈棒棒 +2 位作者 李昆 陆佛生 蒋焕煜 《农机化研究》 北大核心 2026年第2期139-145,共7页
在休眠期枣树自动化修剪作业过程中,切割位置与切割角度对修剪机器人末端执行器的切割扭矩具有重要影响。为寻求最优的切割参数,基于测力传感器、惯性测量传感器、手动剪等搭建了枣树剪枝末端执行器,实时测量并记录切割过程中剪切力、... 在休眠期枣树自动化修剪作业过程中,切割位置与切割角度对修剪机器人末端执行器的切割扭矩具有重要影响。为寻求最优的切割参数,基于测力传感器、惯性测量传感器、手动剪等搭建了枣树剪枝末端执行器,实时测量并记录切割过程中剪切力、姿态和角度等数据。结合Minitab软件对数据进行分析,以线性模型、调整平方和等作为评价指标,建立切割位置与切割角度对刀具切割扭矩影响的模型,揭示切割位置、切割角度与切割扭矩之间的关系。试验结果表明:①相对于末端执行器0°直切枣树枝条时,30°斜切枝条的切割扭矩显著性更高,且两种角度下较小直径的枣树修剪枝所需切割扭矩差异并不显著;②相对于刀具与枣树枝条在刀具枢轴处接触,剪切枝条与刀具中心接触时末端执行器所需的切割扭矩更大,而当枣树枝条直径增大到12 mm以上时刀具接触点对切割扭矩的影响相对减弱。研究结果可为休眠期枣树修剪机器人末端执行器的设计与优化提供数据支撑。 展开更多
关键词 休眠期枣树 机器人修剪 切割特性 末端执行器
在线阅读 下载PDF
一种改进的FFT Pruning算法及其在塔康载波频率测量中的应用 被引量:1
20
作者 彭大国 李治安 +2 位作者 李晓明 裴文林 牛诚旻 《南京邮电大学学报(自然科学版)》 北大核心 2015年第1期66-71,共6页
提出了一种改进的FFT Pruning算法。将Nagai提出的频移思想和Alves提出的辅助矩阵思想结合起来,对信号流图和辅助矩阵进行简化。对输出频点数与辅助矩阵列数的关系进行研究,降低了辅助矩阵的大小,并推导出辅助矩阵的表达式。将改进后的... 提出了一种改进的FFT Pruning算法。将Nagai提出的频移思想和Alves提出的辅助矩阵思想结合起来,对信号流图和辅助矩阵进行简化。对输出频点数与辅助矩阵列数的关系进行研究,降低了辅助矩阵的大小,并推导出辅助矩阵的表达式。将改进后的算法运用到塔康载波频率测量中,先用少点数的FFT进行频率粗搜索,再用改进的FFT Pruning算法进行频率精测。仿真结果表明,改进算法能在运算量不大的情况下实现对塔康载波频率的高精度测量。 展开更多
关键词 FFT pruning 辅助矩阵 塔康 频率测量
在线阅读 下载PDF
上一页 1 2 193 下一页 到第
使用帮助 返回顶部