The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the...The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the atmospheric cloud particles and the existence of a layer of positively charged hydrogen atoms sticking out of the surface of the liquid layer of water on the surface of rimers. Strong turbulence-driven collisions of the ice particles and water droplets with the rimers give rise to breakups of the ice particles and water droplets into positively and negatively charged fragments leading to charge separation. Hot weather in a forest contributes to the updraft of hot and humid air, which follows the same physical/chemical processes of normal lightning proposed and explained recently[1]. Lightning would have a high probability of lighting up and burning the dry biological materials in the ground of the forest, leading to a forest (wild) fire. The burning of trees and other plants would release a lot of heat and moisture together with a lot of smoke particles (aerosols) becoming a strong updraft. The condition for creating lightning is again satisfied which would result in further lightning high above the forest wild fire.展开更多
【目的】燃煤耦合绿氨燃烧发电技术是一种创新的能源利用模式,这一路径有助于减少燃煤发电过程中的碳排放,为未来清洁能源的广泛应用提供新的发展思路和技术路径。本研究旨在深入探索燃煤耦合绿氨燃烧发电技术的可行性。【方法】基于现...【目的】燃煤耦合绿氨燃烧发电技术是一种创新的能源利用模式,这一路径有助于减少燃煤发电过程中的碳排放,为未来清洁能源的广泛应用提供新的发展思路和技术路径。本研究旨在深入探索燃煤耦合绿氨燃烧发电技术的可行性。【方法】基于现有125 MW燃煤电厂进行绿氨耦合改造,在Aspen Plus上成功搭建了燃煤耦合绿氨燃烧发电系统模型。在该模型中由绿氨替代原燃煤系统中的部分煤炭进入锅炉燃烧,根据计算结果对耦合机组的热效率、碳排放以及经济性进行了分析。【结果】研究表明,燃煤耦合绿氨燃烧发电技术对原燃煤系统的热力学性能影响较小,随着耦合比例的增加,耦合系统的热效率逐渐降低,当耦合比例为30%时,耦合系统的热效率降低为36.04%,降低了0.20%。燃煤耦合绿氨燃烧发电技术可以有效降低燃煤系统碳排放,随着耦合比例的增加,耦合系统的碳排放总量及碳排放强度明显降低,当耦合比例为30%时,耦合系统的碳排放总量及碳排放强度分别降低为76.71 t/h及674.2 g/(kW·h),分别降低了29.98%及29.58%。随着耦合比例的增加,耦合系统的固定资产投资(fixed capital investment,FCI)及平准化度电成本(levelized cost of electricity,LCOE)变高,当耦合比例为30%时,耦合系统的FCI由71639.06万元增加至211244.62万元,LCOE由0.39元(/kW·h)增加至0.61元(/kW·h)。【结论】未来随着绿氨价格的逐步降低以及碳交易机制与碳定价机制的逐步确立,燃煤机组耦合绿氨燃烧发电技术将会为燃煤发电机组低碳改造提供有力支撑。展开更多
文摘The mechanism of lightning that ignites a forest fire and the lightning that occurs above a forest fire are explained at the molecular level. It is based on two phenomena, namely, internal charge separation inside the atmospheric cloud particles and the existence of a layer of positively charged hydrogen atoms sticking out of the surface of the liquid layer of water on the surface of rimers. Strong turbulence-driven collisions of the ice particles and water droplets with the rimers give rise to breakups of the ice particles and water droplets into positively and negatively charged fragments leading to charge separation. Hot weather in a forest contributes to the updraft of hot and humid air, which follows the same physical/chemical processes of normal lightning proposed and explained recently[1]. Lightning would have a high probability of lighting up and burning the dry biological materials in the ground of the forest, leading to a forest (wild) fire. The burning of trees and other plants would release a lot of heat and moisture together with a lot of smoke particles (aerosols) becoming a strong updraft. The condition for creating lightning is again satisfied which would result in further lightning high above the forest wild fire.
文摘【目的】燃煤耦合绿氨燃烧发电技术是一种创新的能源利用模式,这一路径有助于减少燃煤发电过程中的碳排放,为未来清洁能源的广泛应用提供新的发展思路和技术路径。本研究旨在深入探索燃煤耦合绿氨燃烧发电技术的可行性。【方法】基于现有125 MW燃煤电厂进行绿氨耦合改造,在Aspen Plus上成功搭建了燃煤耦合绿氨燃烧发电系统模型。在该模型中由绿氨替代原燃煤系统中的部分煤炭进入锅炉燃烧,根据计算结果对耦合机组的热效率、碳排放以及经济性进行了分析。【结果】研究表明,燃煤耦合绿氨燃烧发电技术对原燃煤系统的热力学性能影响较小,随着耦合比例的增加,耦合系统的热效率逐渐降低,当耦合比例为30%时,耦合系统的热效率降低为36.04%,降低了0.20%。燃煤耦合绿氨燃烧发电技术可以有效降低燃煤系统碳排放,随着耦合比例的增加,耦合系统的碳排放总量及碳排放强度明显降低,当耦合比例为30%时,耦合系统的碳排放总量及碳排放强度分别降低为76.71 t/h及674.2 g/(kW·h),分别降低了29.98%及29.58%。随着耦合比例的增加,耦合系统的固定资产投资(fixed capital investment,FCI)及平准化度电成本(levelized cost of electricity,LCOE)变高,当耦合比例为30%时,耦合系统的FCI由71639.06万元增加至211244.62万元,LCOE由0.39元(/kW·h)增加至0.61元(/kW·h)。【结论】未来随着绿氨价格的逐步降低以及碳交易机制与碳定价机制的逐步确立,燃煤机组耦合绿氨燃烧发电技术将会为燃煤发电机组低碳改造提供有力支撑。