To predict the area with frequent seismicity and the future risky region of strong earthquakes on the time scale of one or several years is a very important and urgent problem that needs to be solved.On the basis of a...To predict the area with frequent seismicity and the future risky region of strong earthquakes on the time scale of one or several years is a very important and urgent problem that needs to be solved.On the basis of active fault research,pre-warning active faults that have been active recently will be discussed; then the medium-term risky region of strong earthquakes will be delimited around the pre-warning active faults.This method proves to be effective.展开更多
The aim of the present paper is to obtain the two-dimensional deformation of a two-phase elastic medium consisting of half-spaces of different ri- gidities in welded contact due to a buried long strike-slip fault. The...The aim of the present paper is to obtain the two-dimensional deformation of a two-phase elastic medium consisting of half-spaces of different ri- gidities in welded contact due to a buried long strike-slip fault. The solution is valid for arbitrary values of the fault-depth and the dip angle. The effect of fault-depth on the displacement and stress fields for different values of dip angle has been studied numerically. It is found that the displacement field varies significantly for a buried fault from the corresponding displacement field for an interface-breaking fault. The contour maps showing the stress field for various dip angles for buried and interface-breaking fault have been plotted. It has been observed that the stress field varies significantly for a buried fault from the corresponding stress field for an interface-breaking fault.展开更多
For the case in which a large geological structure like fault existing within the surrounding rock mass in the near field of a repository for high-level radioactive nuclear waste, one kind of coupled thermo-hydro-mech...For the case in which a large geological structure like fault existing within the surrounding rock mass in the near field of a repository for high-level radioactive nuclear waste, one kind of coupled thermo-hydro-mechanical-migratory model of dual-porosity medium for saturated- unsaturated ubiquitous-joint rock mass was established. In the present model, the seepage field and the concentration field are double, but the stress field and the temperature field are single, and the influences of sets, spaces, angles, continuity ratios, stiffness of fractures on the constitutive relationship of the medium can be considered. At the same time, a two-dimensional program of finite element method was developed. Taking a hypothetical nuclear waste repository located at a rock mass being unsaturated dual-porosity medium as a calculation example, the FEM analysis for thermo-hydro-mechanical-migratory coupling were carried out under the condition of radioac- tive nuclide leaking for the cases with and without a fault, and the temperatures, pore pressures, flow velocities, nuclide concentrations and principal stresses in the rock mass were investigated. The results show that the fracture water in the fault flows is basically along the fault direction, and its flow velocity is almost three orders of magnitude higher than that of fracture water in rock mass; the nuclide concentration in the fault is also much higher than that without fault, and the nuclides move along the fault faster; moreover, the fault has obvious influences on the pore pressures and the principal stresses in the rock mass.展开更多
Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and ...Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and Q&P (quenching and partitioning) processing, were investigated. The volume fractions of RA before and after deformation were measured at different equivalent strains. The transformation behaviors of RA were also investigated. The stability of RA differed across two different transformation stages at the plane strain state: the stability was much lower in the first stage than in the second stage. For the uniaxial ten sion strain state, the stability of RA corresponded only to a single transformation stage. The main reason was that there were two types of transformations from RA in the medium Mn steel for the plane strain state. One type was that the martensite originated in the strain-induced stacking faults (SISF). The other type was the strain-induced directly twin martensite at a certain equivalent strain. However, for the uniax- ial tension state, only the strain-induced twin martensite was observed. Dislocation lines and dislocation tangles were also observed in specimens deformed at different strain states. In addition, complex micro- structures of stacking faults and lath-like phases were observed within a grain at the plane strain state.展开更多
文摘To predict the area with frequent seismicity and the future risky region of strong earthquakes on the time scale of one or several years is a very important and urgent problem that needs to be solved.On the basis of active fault research,pre-warning active faults that have been active recently will be discussed; then the medium-term risky region of strong earthquakes will be delimited around the pre-warning active faults.This method proves to be effective.
文摘The aim of the present paper is to obtain the two-dimensional deformation of a two-phase elastic medium consisting of half-spaces of different ri- gidities in welded contact due to a buried long strike-slip fault. The solution is valid for arbitrary values of the fault-depth and the dip angle. The effect of fault-depth on the displacement and stress fields for different values of dip angle has been studied numerically. It is found that the displacement field varies significantly for a buried fault from the corresponding displacement field for an interface-breaking fault. The contour maps showing the stress field for various dip angles for buried and interface-breaking fault have been plotted. It has been observed that the stress field varies significantly for a buried fault from the corresponding stress field for an interface-breaking fault.
基金supported by the National Key Basic Research and Development Program of China (973 Project) (No. 2010CB732101)the National Natural Science Foundation of China (No. 51079145)the Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering (No. SKLQ008)
文摘For the case in which a large geological structure like fault existing within the surrounding rock mass in the near field of a repository for high-level radioactive nuclear waste, one kind of coupled thermo-hydro-mechanical-migratory model of dual-porosity medium for saturated- unsaturated ubiquitous-joint rock mass was established. In the present model, the seepage field and the concentration field are double, but the stress field and the temperature field are single, and the influences of sets, spaces, angles, continuity ratios, stiffness of fractures on the constitutive relationship of the medium can be considered. At the same time, a two-dimensional program of finite element method was developed. Taking a hypothetical nuclear waste repository located at a rock mass being unsaturated dual-porosity medium as a calculation example, the FEM analysis for thermo-hydro-mechanical-migratory coupling were carried out under the condition of radioac- tive nuclide leaking for the cases with and without a fault, and the temperatures, pore pressures, flow velocities, nuclide concentrations and principal stresses in the rock mass were investigated. The results show that the fracture water in the fault flows is basically along the fault direction, and its flow velocity is almost three orders of magnitude higher than that of fracture water in rock mass; the nuclide concentration in the fault is also much higher than that without fault, and the nuclides move along the fault faster; moreover, the fault has obvious influences on the pore pressures and the principal stresses in the rock mass.
基金financial support of the State Key Research and Development Program of China(Grant No.2017YFB0304404)
文摘Based on uniaxial tensile and plane strain deformation tests, the effects of strain states on the stability of RA (retained austenite) in medium Mn steels, which were subjected to IA (intercritical annealing) and Q&P (quenching and partitioning) processing, were investigated. The volume fractions of RA before and after deformation were measured at different equivalent strains. The transformation behaviors of RA were also investigated. The stability of RA differed across two different transformation stages at the plane strain state: the stability was much lower in the first stage than in the second stage. For the uniaxial ten sion strain state, the stability of RA corresponded only to a single transformation stage. The main reason was that there were two types of transformations from RA in the medium Mn steel for the plane strain state. One type was that the martensite originated in the strain-induced stacking faults (SISF). The other type was the strain-induced directly twin martensite at a certain equivalent strain. However, for the uniax- ial tension state, only the strain-induced twin martensite was observed. Dislocation lines and dislocation tangles were also observed in specimens deformed at different strain states. In addition, complex micro- structures of stacking faults and lath-like phases were observed within a grain at the plane strain state.