期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
A fault diagnosis method for complex chemical process integrating shallow learning and deep learning
1
作者 Yadong He Zhe Yang +3 位作者 Bing Sun Wei Xu Chengdong Gou Chunli Wang 《Chinese Journal of Chemical Engineering》 2025年第9期49-65,共17页
The accurate identification and diagnosis of chemical process faults are crucial for ensuring the safe and stable operation of production plants.The current hot topic in industrial process fault diagnosis research is ... The accurate identification and diagnosis of chemical process faults are crucial for ensuring the safe and stable operation of production plants.The current hot topic in industrial process fault diagnosis research is data-driven methods.Most of the existing fault diagnosis methods focus on a single shallow or deep learning model.This paper proposes a novel hybrid fault diagnosis method to fully utilize various features to improve the accuracy of fault diagnosis.Furthermore,the method addresses the issue of incomplete data,which has been largely overlooked in the majority of existing research.Firstly,the variable data is effectively fitted using orthogonal non-negative matrix tri-factorization,and the missing data in the matrix is solved to construct a complete production condition relationship.Next,the support vector machine model and the deep residual contraction network model are trained in parallel to prediagnose process faults by mining linear and non-linear interaction features.Finally,a novel mapping relationship is established between the result and model levels using the multi-layer perceptron algorithm to complete the final diagnosis and evaluation of the fault.To demonstrate the effectiveness of the proposed method,we conducted extensive comparative experiments on the Tennessee Eastman dataset and the ethylene plant cracking unit dataset.The experimental results show that the method has advantages in different evaluation metrics. 展开更多
关键词 Chemical process Hybrid fault diagnosis Incomplete data Support vector machine deep residual contraction network Multi-layer perceptron
在线阅读 下载PDF
Extensional Tectonic System of Erlian Fault Basin Groupand Its Deep Background
2
作者 Ren Jianye Li Sitian Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 Jiao Guihao Exploration and Development Research Institute, Huabei Oil Administration Bureau, Renqiu 062552 Chen Ping Faculty of Business Administratio 《Journal of Earth Science》 SCIE CAS CSCD 1998年第3期44-49,共6页
The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abund... The Erlian fault basin group, a typical Basin and Range type fault basin group, was formed during Late Jurassic to Early Cretaceous, in which there are rich coal, oil and gas resources. In the present paper the abundant geological and petroleum information accumulated in process of industry oil and gas exploration and development of the Erlian basin group is comprehensively analyzed, the structures related to formation of basin are systematically studied, and the complete extensional tectonic system of this basin under conditions of wide rift setting and low extensional ratio is revealed by contrasting study with Basin and Range Province of the western America. Based on the above studies and achievements of the former workers, the deep background of the basin development is treated. 展开更多
关键词 Late Mesozoic rifting extensional tectonic system deep process Erlian fault basin group.
在线阅读 下载PDF
Fault diagnosis for distillation process based on CNN–DAE 被引量:15
3
作者 Chuankun Li Dongfeng Zhao +3 位作者 Shanjun Mu Weihua Zhang Ning Shi Lening Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第3期598-604,共7页
Distillation is the most widely used operation for liquid mixture separation in the chemical industry. It is of great importance to detect and diagnose faults in distillation process. Due to the strong feedback and co... Distillation is the most widely used operation for liquid mixture separation in the chemical industry. It is of great importance to detect and diagnose faults in distillation process. Due to the strong feedback and coupling of processes in a distillation column, it is difficult to use deep auto-encoders(DAEs) alone to achieve good results in detecting and diagnosing faults, in terms of accuracy and efficiency. This paper proposes a hybrid fault-diagnosis model based on convolutional neural networks(CNNs) and DAEs, by integrating the powerful capability of CNN in feature extraction and of DAE in classification. A case study was carried out with the distillation process of depropanization. It is shown that the proposed hybrid model is of good performance compared to other models, in terms of the accuracy of fault detection in such a process. Also, with the increase of structural layers of the CNN–DAE model, the diagnostic accuracy will be improved, with an optimal accuracy of 92.2%. 展开更多
关键词 Convolutional neural networks deep auto-encoders DISTILLATION process fault diagnosis
在线阅读 下载PDF
Denoising Fault-Aware Wavelet Network:A Signal Processing Informed Neural Network for Fault Diagnosis 被引量:14
4
作者 Zuogang Shang Zhibin Zhao Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期1-18,共18页
Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods dif... Deep learning(DL) is progressively popular as a viable alternative to traditional signal processing(SP) based methods for fault diagnosis. However, the lack of explainability makes DL-based fault diagnosis methods difficult to be trusted and understood by industrial users. In addition, the extraction of weak fault features from signals with heavy noise is imperative in industrial applications. To address these limitations, inspired by the Filterbank-Feature-Decision methodology, we propose a new Signal Processing Informed Neural Network(SPINN) framework by embedding SP knowledge into the DL model. As one of the practical implementations for SPINN, a denoising fault-aware wavelet network(DFAWNet) is developed, which consists of fused wavelet convolution(FWConv), dynamic hard thresholding(DHT),index-based soft filtering(ISF), and a classifier. Taking advantage of wavelet transform, FWConv extracts multiscale features while learning wavelet scales and selecting important wavelet bases automatically;DHT dynamically eliminates noise-related components via point-wise hard thresholding;inspired by index-based filtering, ISF optimizes and selects optimal filters for diagnostic feature extraction. It’s worth noting that SPINN may be readily applied to different deep learning networks by simply adding filterbank and feature modules in front. Experiments results demonstrate a significant diagnostic performance improvement over other explainable or denoising deep learning networks. The corresponding code is available at https://github. com/alber tszg/DFAWn et. 展开更多
关键词 Signal processing deep learning Explainable DENOISING fault diagnosis
在线阅读 下载PDF
Study on anti-faulting design process of Urumqi subway line 2 tunnel crossing reverse fault 被引量:8
5
作者 An Shao Tao Lianjin Bian Jin 《Journal of Southeast University(English Edition)》 EI CAS 2020年第4期425-435,共11页
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre... For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface. 展开更多
关键词 subway tunnel finite element method anti-faulting design process fault rupture surface buried depth flexible joint
在线阅读 下载PDF
Identification of abnormal conditions in high-dimensional chemical process based on feature selection and deep learning 被引量:4
6
作者 Wende Tian Zijian Liu +2 位作者 Lening Li Shifa Zhang Chuankun Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1875-1883,共9页
Identification of abnormal conditions is essential in the chemical process.With the rapid development of artificial intelligence technology,deep learning has attracted a lot of attention as a promising fault identific... Identification of abnormal conditions is essential in the chemical process.With the rapid development of artificial intelligence technology,deep learning has attracted a lot of attention as a promising fault identification method in chemical process recently.In the high-dimensional data identification using deep neural networks,problems such as insufficient data and missing data,measurement noise,redundant variables,and high coupling of data are often encountered.To tackle these problems,a feature based deep belief networks(DBN)method is proposed in this paper.First,a generative adversarial network(GAN)is used to reconstruct the random and non-random missing data of chemical process.Second,the feature variables are selected by Spearman’s rank correlation coefficient(SRCC)from high-dimensional data to eliminate the noise and redundant variables and,as a consequence,compress data dimension of chemical process.Finally,the feature filtered data is deeply abstracted,learned and tuned by DBN for multi-case fault identification.The application in the Tennessee Eastman(TE)process demonstrates the fast convergence and high accuracy of this proposal in identifying abnormal conditions for chemical process,compared with the traditional fault identification algorithms. 展开更多
关键词 Chemical process deep Belief Networks fault identification Generative Adversarial Networks Spearman Rank Correlation
在线阅读 下载PDF
Locally Linear Back-propagation Based Contribution for Nonlinear Process Fault Diagnosis 被引量:5
7
作者 Jinchuan Qian Li Jiang Zhihuan Song 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第3期764-775,共12页
This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fau... This paper proposes a novel locally linear backpropagation based contribution(LLBBC) for nonlinear process fault diagnosis. As a method based on the deep learning model of auto-encoder(AE), LLBBC can deal with the fault diagnosis problem through extracting nonlinear features. When the on-line fault diagnosis task is in progress, a locally linear model is firstly built at the current fault sample. According to the basic idea of reconstruction based contribution(RBC), the propagation of fault information is described by using back-propagation(BP) algorithm. Then, a contribution index is established to measure the correlation between the variable and the fault, and the final diagnosis result is obtained by searching variables with large contributions. The smearing effect, which is an important factor affecting the performance of fault diagnosis, can be suppressed as well,and the theoretical analysis reveals that the correct diagnosis can be guaranteed by LLBBC. Finally, the feasibility and effectiveness of the proposed method are verified through a nonlinear numerical example and the Tennessee Eastman benchmark process. 展开更多
关键词 Auto-encoder(AE) deep learning fault diagnosis LOCALLY LINEAR model nonlinear process reconstruction BASED contribution(RBC)
在线阅读 下载PDF
Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors 被引量:1
8
作者 Majid Hussain Tayab Din Memon +2 位作者 Imtiaz Hussain Zubair Ahmed Memon Dileep Kumar 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第11期435-470,共36页
Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely repo... Owing to the 4.0 industrial revolution condition monitoring maintenance is widely accepted as a useful approach to avoiding plant disturbances and shutdown.Recently,Motor Current Signature Analysis(MCSA)is widely reported as a condition monitoring technique in the detection and identification of individual andmultiple Induction Motor(IM)faults.However,checking the fault detection and classification with deep learning models and its comparison among them selves or conventional approaches is rarely reported in the literature.Therefore,in this work,wepresent the detection and identification of induction motor faults with MCSA and three Deep Learning(DL)models namely MLP,LSTM,and 1D-CNN.Initially,we have developed the model of Squirrel Cage induction motor in MATLAB and simulated it for single phasing and stator winding faults(SWF)using Fast Fourier Transform(FFT),Short Time Fourier Transform(STFT),and Continuous Wavelet Transform(CWT)to detect and identify the healthy and unhealthy conditions with phase to ground,single phasing and in multiple fault conditions using Motor Current Signature Analysis.The faults impact on stator current is presented in the time and frequency domain(i.e.,power spectrum).The simulation results show that the scalogram has shown good results in time-frequency analysis for fault and showing its impact on the energy of current during individual fault and multiple fault conditions.This is further investigated with three deep learning models(i.e.,MLP,LSTM,and 1D-CNN)for checking the fault detection and identification(i.e.,classification)improvement in a three-phase induction motor.By simulating the three-phase induction motor in various healthy and unhealthy conditions in MATLAB,we have collected current signature data in the time domain,labeled them accordingly and created the 50 thousand samples dataset for DL models.All the DL models are trained and validated with a suitable number of architecture layers.By simulation,the multiclass confusion matrix,precision,recall,and F1-score are obtained in several conditions.The result shows that the stator current signature of the motor can be used to detect individual and multiple faults.Moreover,deep learning models can efficiently classify the induction motor faults based on time-domain data of the stator current signature.In deep learning(DL)models,the LSTM has shown better accuracy among all other three models.These results show that employing deep learning in fault detection and identification of induction motors can be very useful in predictive maintenance to avoid shutdown and production cycle stoppage in the industry. 展开更多
关键词 Condition monitoring motor fault diagnosis stator winding faults deep learning signal processing
在线阅读 下载PDF
A review of research on intelligent fault detection of power equipment based on infrared and voiceprint: methods, applications and challenges
9
作者 Xizhou Du Xing Lei +4 位作者 Ting Ye Yingzhou Sun Zewen Shang Zhiqiang Liu Tianyi Xu 《Global Energy Interconnection》 2025年第5期821-846,共26页
As modern power systems grow in complexity,accurate and efficient fault detection has become increasingly important.While many existing reviews focus on a single modality,this paper presents a comprehensive survey fro... As modern power systems grow in complexity,accurate and efficient fault detection has become increasingly important.While many existing reviews focus on a single modality,this paper presents a comprehensive survey from a dual-modality perspective-infrared imaging and voiceprint analysis-two complementary,non-contact techniques that capture different fault characteristics.Infrared imaging excels at detecting thermal anomalies,while voiceprint signals provide insight into mechanical vibrations and internal discharge phenomena.We review both traditional signal processing and deep learning-based approaches for each modality,categorized by key processing stages such as feature extraction and classification.The paper highlights how these modalities address distinct fault types and how they may be fused to improve robustness and accuracy.Representative datasets are summarized,and practical challenges such as noise interference,limited fault samples,and deployment constraints are discussed.By offering a cross-modal,comparative analysis,this work aims to bridge fragmented research and guide future development in intelligent fault detection systems.The review concludes with research trends including multimodal fusion,lightweight models,and self-supervised learning. 展开更多
关键词 Power equipment fault detection Infrared image Voiceprint data deep learning Traditional image processing Voiceprint detection
在线阅读 下载PDF
Hierarchical multihead self-attention for time-series-based fault diagnosis 被引量:3
10
作者 Chengtian Wang Hongbo Shi +1 位作者 Bing Song Yang Tao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期104-117,共14页
Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fa... Fault diagnosis is important for maintaining the safety and effectiveness of chemical process.Considering the multivariate,nonlinear,and dynamic characteristic of chemical process,many time-series-based data-driven fault diagnosis methods have been developed in recent years.However,the existing methods have the problem of long-term dependency and are difficult to train due to the sequential way of training.To overcome these problems,a novel fault diagnosis method based on time-series and the hierarchical multihead self-attention(HMSAN)is proposed for chemical process.First,a sliding window strategy is adopted to construct the normalized time-series dataset.Second,the HMSAN is developed to extract the time-relevant features from the time-series process data.It improves the basic self-attention model in both width and depth.With the multihead structure,the HMSAN can pay attention to different aspects of the complicated chemical process and obtain the global dynamic features.However,the multiple heads in parallel lead to redundant information,which cannot improve the diagnosis performance.With the hierarchical structure,the redundant information is reduced and the deep local time-related features are further extracted.Besides,a novel many-to-one training strategy is introduced for HMSAN to simplify the training procedure and capture the long-term dependency.Finally,the effectiveness of the proposed method is demonstrated by two chemical cases.The experimental results show that the proposed method achieves a great performance on time-series industrial data and outperforms the state-of-the-art approaches. 展开更多
关键词 Self-attention mechanism deep learning Chemical process Time-series fault diagnosis
在线阅读 下载PDF
Advancements in Photovoltaic Panel Fault Detection Techniques
11
作者 Junyao Zheng 《Journal of Materials Science and Chemical Engineering》 2024年第6期1-11,共11页
This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV tech... This paper examines the progression and advancements in fault detection techniques for photovoltaic (PV) panels, a target for optimizing the efficiency and longevity of solar energy systems. As the adoption of PV technology grows, the need for effective fault detection strategies becomes increasingly paramount to maximize energy output and minimize operational downtimes of solar power systems. These approaches include the use of machine learning and deep learning methodologies to be able to detect the identified faults in PV technology. Here, we delve into how machine learning models, specifically kernel-based extreme learning machines and support vector machines, trained on current-voltage characteristic (I-V curve) data, provide information on fault identification. We explore deep learning approaches by taking models like EfficientNet-B0, which looks at infrared images of solar panels to detect subtle defects not visible to the human eye. We highlight the utilization of advanced image processing techniques and algorithms to exploit aerial imagery data, from Unmanned Aerial Vehicles (UAVs), for inspecting large solar installations. Some other techniques like DeepLabV3 , Feature Pyramid Networks (FPN), and U-Net will be detailed as such tools enable effective segmentation and anomaly detection in aerial panel images. Finally, we discuss implications of these technologies on labor costs, fault detection precision, and sustainability of PV installations. 展开更多
关键词 Photovoltaic Panels fault Detection deep Learning Image processing
在线阅读 下载PDF
DMIFD:一种基于深度学习的多模态工业故障诊断方法 被引量:1
12
作者 尹刚 朱淼 +3 位作者 颜玥涵 王怀江 江茂华 刘期烈 《仪器仪表学报》 北大核心 2025年第6期215-227,共13页
基于深度学习的故障诊断是当前工业安全智能化管理的重要研究方向。工业实际生产中故障时常发生,导致生产效率下降,严重时会造成停产甚至人员伤亡。由于生产环境复杂多变,导致故障特征难以提取和识别,且工业现场需要实时监测和快速诊断... 基于深度学习的故障诊断是当前工业安全智能化管理的重要研究方向。工业实际生产中故障时常发生,导致生产效率下降,严重时会造成停产甚至人员伤亡。由于生产环境复杂多变,导致故障特征难以提取和识别,且工业现场需要实时监测和快速诊断,传统故障诊断方法通常依赖专家经验进行特征提取和模式识别,难以适应复杂动态的工业环境。针对上述问题,提出了一种基于深度学习的多模态工业故障诊断方法。采用极端梯度提升(XGBoost)筛选与工业故障相关的工艺参数,以此作为模型输入的多模态数据。通过深度极限学习机(DELM)提取生产工艺参数的非线性和高维特征,识别出异常状态的工业设备,并利用霜冰优化算法(RIME)优化DELM的关键参数,使模型达到最佳性能。RIME-DELM输出正常状态的设备样本,异常设备样本则继续输入至深度置信网络(DBN)和最小二乘支持向量机(LSSVM),对异常样本进行故障类型的具体判别。将所提出的方法应用于铝电解生产过程,验证了模型的有效性。经铝电解生产现场实验结果表明,该模型的异常状态检测的准确率为97.96%,F1-score为0.9753,故障类型诊断的准确率为96.75%,Macro-F1分数为0.9447,通过消融实验、与常见深度学习模型对比,本文构建的DMIFD模型诊断精度更高,为实际工业生产的故障诊断提高了更准确、可靠的支持。 展开更多
关键词 深度学习 故障诊断 多模态融合 神经网络 过程控制
原文传递
基于知识图谱的钻井顶部驱动装置故障智能诊断方法 被引量:1
13
作者 陈冬 肖远山 +2 位作者 尹志勇 张彦龙 叶智慧 《天然气工业》 北大核心 2025年第2期125-135,共11页
钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井... 钻井顶部驱动装置结构复杂、故障类型多样,现有的故障树分析法和专家系统难以有效应对复杂多变的现场情况。为此,利用知识图谱在结构化与非结构化信息融合、故障模式关联分析以及先验知识传递方面的优势,提出了一种基于知识图谱的钻井顶部驱动装置故障诊断方法,利用以Transformer为基础的双向编码器模型(Bidirectional Encoder Representations from Transformers,BERT)构建了混合神经网络模型BERT-BiLSTM-CRF与BERT-BiLSTM-Attention,分别实现了顶驱故障文本数据的命名实体识别和关系抽取,并通过相似度计算,实现了故障知识的有效融合和智能问答,最终构建了顶部驱动装置故障诊断方法。研究结果表明:①在故障实体识别任务上,BERT-BiLSTM-CRF模型的精确度达到95.49%,能够有效识别故障文本中的信息实体;②在故障关系抽取上,BERT-BiLSTM-Attention模型的精确度达到93.61%,实现了知识图谱关系边的正确建立;③开发的问答系统实现了知识图谱的智能应用,其在多个不同类型问题上的回答准确率超过了90%,能够满足现场使用需求。结论认为,基于知识图谱的故障诊断方法能够有效利用顶部驱动装置的先验知识,实现故障的快速定位与智能诊断,具备良好的应用前景。 展开更多
关键词 钻井装备 顶部驱动装置 故障诊断 深度学习 知识图谱 自然语言处理 命名实体识别 智能问答系统
在线阅读 下载PDF
基于深度类别监督堆栈自编码器的催化裂化故障诊断方法及应用
14
作者 耿志强 祁海瀛 +5 位作者 倪庆旭 李涛 马波 潘峰 谭蕾 韩永明 《过程工程学报》 北大核心 2025年第9期987-994,共8页
为了解决催化裂化系统中复合故障识别的挑战,并在数据不平衡和小样本情况下提高故障诊断的准确率,以满足工业实时过程的需求,本研究提出了一种基于深度类别监督堆栈自编码器的故障诊断方法。该方法通过在自编码器中引入类别信息,增强了... 为了解决催化裂化系统中复合故障识别的挑战,并在数据不平衡和小样本情况下提高故障诊断的准确率,以满足工业实时过程的需求,本研究提出了一种基于深度类别监督堆栈自编码器的故障诊断方法。该方法通过在自编码器中引入类别信息,增强了对类别信息的关注,同时利用混合损失函数协调特征保真度与分类精度,在保持了模型结构的简洁性的同时,有效提升了故障诊断准确率。对催化裂化装置反应-再生系统故障数据集的验证结果表明,与堆栈自编码器、多层感知器、深度信念网络、t分布随机邻域嵌入、主成分分析等方法相比,该方法显著提高了诊断准确率,并缩短了模型的训练时间。 展开更多
关键词 故障诊断 深度学习 自编码器 化工过程
原文传递
基于深度学习的RGB-D图像显著性目标检测前沿进展 被引量:3
15
作者 黄年昌 杨阳 +1 位作者 张强 韩军功 《计算机学报》 北大核心 2025年第2期284-316,共33页
显著性目标检测是计算机视觉领域的基础问题之一,旨在对图像中最吸引人注意的目标进行检测和分割。随着深度学习技术的发展,基于RGB(Red-Green-Blue)图像的显著性目标检测算法取得了巨大进步,在简单场景下已经取得较为满意的结果。然而... 显著性目标检测是计算机视觉领域的基础问题之一,旨在对图像中最吸引人注意的目标进行检测和分割。随着深度学习技术的发展,基于RGB(Red-Green-Blue)图像的显著性目标检测算法取得了巨大进步,在简单场景下已经取得较为满意的结果。然而,局限于可见光相机的成像能力,RGB图像易受到光照条件的影响,且无法捕捉场景的三维空间信息。相应地,基于RGB图像的显著性目标检测算法通常难以在一些复杂场景下取得较好的检测效果。近年来,随着深度成像技术不断发展和硬件成本不断降低,深度相机得到了广泛应用。其捕获的场景空间信息,与可见光图像获取的场景细节信息相互补充,有助于提升复杂场景下显著性目标检测性能。因此,RGB-深度(RGB-Depth,RGB-D)图像显著性目标检测引起了学者广泛研究。本文对近期基于深度学习的RGB-D图像显著性目标检测算法进行了整理和分析。首先,分析了多模态RGB-D图像显著性目标检测所面临的关键问题,并以此对现有算法解决这些关键问题的主要思路和方法进行了总结和梳理。然后,介绍了用于RGB-D图像显著性目标检测算法研究的主流数据集和常用性能评价指标,并对各类主流模型进行了定量比较和定性分析。最后,本文进一步分析了RGB-D图像显著性目标检测领域有待解决的问题,同时对今后可能的研究趋势进行了展望。 展开更多
关键词 显著性目标检测 RGB图像 深度图像 深度学习 多模态图像处理
在线阅读 下载PDF
螺栓/铆钉故障的视觉检测方法研究进展 被引量:1
16
作者 刘传洋 吴一全 刘景景 《仪器仪表学报》 北大核心 2025年第3期143-160,共18页
螺栓/铆钉分别作为输电线路、铁路交通、桥梁及飞行器等领域工程应用中不可或缺的连接紧固件,其在受到外界环境因素影响时,不免会出现销钉缺失、螺母松动、螺栓锈蚀及铆钉损伤等故障,准确识别有故障的螺栓/铆钉对保障输电线路、铁路交... 螺栓/铆钉分别作为输电线路、铁路交通、桥梁及飞行器等领域工程应用中不可或缺的连接紧固件,其在受到外界环境因素影响时,不免会出现销钉缺失、螺母松动、螺栓锈蚀及铆钉损伤等故障,准确识别有故障的螺栓/铆钉对保障输电线路、铁路交通、飞行器等安全稳定运行具有重要意义。在海量数据驱动下,基于深度学习的螺栓/铆钉故障检测方法利用卷积神经网络自动逐层学习图像的深层特征,通过训练优化网络模型参数提升特征提取能力和泛化能力,取得了比传统图像处理方法更好的检测结果。文章综述了近十年来基于视觉的螺栓/铆钉故障检测方法的研究进展。首先简述了螺栓/铆钉故障特征及视觉检测面临的挑战;然后依托深度学习技术概述了螺栓/铆钉故障检测方法,从双阶段算法、单阶段算法和级联检测模型3个方面对基于深度学习的螺栓/铆钉故障检测方法进行了总结;随后针对线路类、箱体类、构件类螺栓/铆钉典型应用场景,重点阐述了螺栓/铆钉故障的视觉检测方法;最后针对基于机器视觉的螺栓/铆钉故障检测在数据集、样本标注、小目标检测等方面面临挑战,结合现有的深度学习技术和最近的研究思路,详细分析了基于深度学习的螺栓/铆钉故障检测未来的发展趋势。 展开更多
关键词 螺栓 铆钉 故障检测 图像处理 深度学习 机器视觉
原文传递
基于红外图像的电力设备识别及发热故障诊断方法研究进展 被引量:11
17
作者 刘传洋 吴一全 《中国电机工程学报》 北大核心 2025年第6期2171-2195,I0011,共26页
在电力大数据背景下,依托机器视觉和深度学习技术,从海量的红外图像数据中实现电力设备识别及发热故障诊断,已经成为该领域运维工作亟待解决的问题。该文以红外图像为研究对象,综述了基于传统图像处理和基于深度学习两类方法的红外图像... 在电力大数据背景下,依托机器视觉和深度学习技术,从海量的红外图像数据中实现电力设备识别及发热故障诊断,已经成为该领域运维工作亟待解决的问题。该文以红外图像为研究对象,综述了基于传统图像处理和基于深度学习两类方法的红外图像中电力设备识别及发热故障诊断研究进展。首先,概述电力设备红外图像识别及发热故障诊断的发展历程及技术流程;然后,阐明基于传统图像处理的电力设备识别及发热故障诊断方法,从图像预处理、图像配准、图像分割、特征提取与分类、发热故障诊断5个方面进行归纳总结;阐述基于深度学习的变电站设备和输电线路设备识别及发热故障诊断方法,与传统图像处理方法相比,深度学习方法能够快速准确地识别电力设备发热故障;最后,指出基于深度学习的视觉技术在电力设备识别及发热故障诊断应用中存在的问题,基于现有的深度学习技术和最近的研究思路,对未来研究工作进行展望。 展开更多
关键词 电力设备识别 发热故障诊断 红外图像 传统图像处理 深度学习 视觉检测
原文传递
基于物联网与深度学习的机械设备的故障诊断综述 被引量:3
18
作者 韩海飞 魏仁哲 +1 位作者 王收军 刘楠 《天津理工大学学报》 2025年第2期21-29,共9页
高效的机械设备故障诊断是保证机械系统正常运行的必要条件,针对传统的故障诊断过于依赖复杂的人工特征提取,已经不能满足实际诊断要求的问题,归纳综述了将物联网(internet of things,IoT)与深度学习相结合进行故障诊断这一具有潜力的... 高效的机械设备故障诊断是保证机械系统正常运行的必要条件,针对传统的故障诊断过于依赖复杂的人工特征提取,已经不能满足实际诊断要求的问题,归纳综述了将物联网(internet of things,IoT)与深度学习相结合进行故障诊断这一具有潜力的技术。阐述了IoT在设备故障诊断中的便利与优势,对当前基于深度学习的故障诊断就卷积神经网络(convolutional neural network,CNN)、生成对抗网络(generative adversurial network,GAN)、自动编码器(autoencoder,AE)和深度置信网络(deep belief networks,DBN)展开,介绍了各种算法以及应用场景,同时列举了近年来国内外学者在机械设备故障诊断方面开展的研究情况,并比较了不同应用场景下的优势与不足。最后,对于将物联网与深度学习相结合应用在机械设备的故障诊断方向上的未来发展做出展望。 展开更多
关键词 故障诊断 物联网 综述 深度学习 数据处理
在线阅读 下载PDF
塔里木盆地超深层走滑断裂结构及垂向生长过程构造物理模拟实验 被引量:1
19
作者 能源 谢舟 +5 位作者 邵龙飞 阮畦畦 康鹏飞 张佳楠 田志文 刘根骥 《石油勘探与开发》 北大核心 2025年第5期1041-1053,共13页
针对塔里木盆地超深层走滑断裂带垂向生长演化过程不明、碳酸盐岩缝洞体储层垂向分布复杂的问题,通过柯坪地区野外露头分析、富满油田地震资料解释及构造物理模拟实验等方法对走滑断裂垂向演化过程进行研究。结果表明:(1)露头及超深层... 针对塔里木盆地超深层走滑断裂带垂向生长演化过程不明、碳酸盐岩缝洞体储层垂向分布复杂的问题,通过柯坪地区野外露头分析、富满油田地震资料解释及构造物理模拟实验等方法对走滑断裂垂向演化过程进行研究。结果表明:(1)露头及超深层地震剖面解释表明,走滑断裂内部可形成断层核-破碎带-原岩3层结构,断层核在垂向空间内可以划分为缝洞体、断层泥及角砾岩带3种结构。受走滑断裂带结构及生长演化过程影响,缝洞体分布表现出明显的垂向分层性。(2)超深层地震剖面显示走滑断裂带发育多层缝洞体,可分为顶部破裂型、中部连接型、深部终止型及层内破裂型4种类型。(3)构造物理模拟实验及超深层地震资料解释揭示走滑断裂在垂向上经历了分层破裂—垂向生长—连接扩展3个演化阶段;应用粒子测速监测技术发现,断裂带演化的初始阶段首先在顶部或底部形成初始破裂,在断层生长阶段初始破裂逐渐演化成断裂空腔,随后在地层中部出现新的破裂,与深浅层断裂空腔连接形成完整的断层带。(4)超深层碳酸盐岩地层主要发育3类缝洞型油藏(花状破碎型、深大断裂型、错断叠接型),前两类缝洞体发育规模更大、油气成藏条件好、勘探潜力大。 展开更多
关键词 走滑断裂 垂向生长 演化过程 构造物理模拟 奥陶系 碳酸盐岩缝洞体 超深层 塔里木盆地 富满油田
在线阅读 下载PDF
基于特征加权的化工过程中未见模式的故障诊断
20
作者 易瓅 侍洪波 +1 位作者 宋冰 陶阳 《华东理工大学学报(自然科学版)》 北大核心 2025年第5期693-703,共11页
故障诊断是化工行业确保生产安全和产品质量的关键。现有的基于深度神经网络的故障诊断模型利用特定条件下的样本训练,忽视了其领域泛化能力,导致在复杂多变的场景中诊断性能出现明显下降。针对这一问题,提出了一种基于加权的领域特定... 故障诊断是化工行业确保生产安全和产品质量的关键。现有的基于深度神经网络的故障诊断模型利用特定条件下的样本训练,忽视了其领域泛化能力,导致在复杂多变的场景中诊断性能出现明显下降。针对这一问题,提出了一种基于加权的领域特定特征去除网络(Weighted-Based Domain-Specific Feature Removal Network,WBDSFRN)。WBDSFRN包含一个基于加权的领域特定特征去除模块,在训练阶段区分领域不变特征和领域特定特征;在测试阶段尽量将目标域特定特征去除,从而减轻领域偏移的影响。最后,利用田纳西-伊士曼工艺(Tennessee-Eastman Process,TEP)进行实验。结果表明,WBDSFRN的性能优于现有方法,在复杂多变的操作条件下也能表现出稳健的诊断性能。 展开更多
关键词 故障诊断 深度神经网络 领域泛化 领域偏移 田纳西-伊士曼工艺
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部