An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately ...An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately following 'flooding' and it is likelythat this was caused mainlyby decomposition of organic debris from the inundated plants. Deoxygenation eventually led to thedepletion of dissolved oxygen (DO) in the 'floodwater' and it is highly possible that this resultedin the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide. and organic nitrogento ammonia (ammonification). The accumulation of these reduced substances allows the 'floodwater'to develop DO-consuming capacity (DOCC). When the 'floodwater' is mixed with the introducedoxygenated water, apart from the dilution effects, the reduced substances contained in the'floodwater' oxidize to further consume DO carried by the introduced water. However, it appears thatthe DO drop in the mixed water can only last for a few hours if no additional DO-depleted'floodwater' is added. Entry of atmospheric oxygen into the water can raise the DO level of themixed water arid lower water pH through the oxidation of the reduced substances.展开更多
Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed fr...Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.展开更多
Spray coating of polymer latex onto fertilizer particles in a fiuidized bed for producing controlled-release urea is an environment friendly technology as it does not need any toxic organic solvent. Since the spray co...Spray coating of polymer latex onto fertilizer particles in a fiuidized bed for producing controlled-release urea is an environment friendly technology as it does not need any toxic organic solvent. Since the spray coating process in a fluidized bed occurs in the presence of particle collisions, the coating of the particles is random, intermittent and multiple, thus making it difficult to investigate the film formation process. In this paper, an experimental model apparatus was designed and used to investigate the effects of the key factors in the spray coating process. This apparatus reasonably simplified the complex process to avoid particle collisions and randomness in the coating. The intermittent coating in the fluidized bed was modeled by periodic coating and dewatering in the experimental apparatus. A large area film was obtained, and the film permeability was measured. The effects of atomizing gas flow rate, spray rate of latex, solid content of latex and gas temperature on film structure and film permeability were investigated. It was found that water transfer played a dominant role in the spray coating process.展开更多
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extra...Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
This article aims tomodel and analyze the heat and fluid flow characteristics of a carboxymethyl cellulose(CMC)nanofluid within a convergent-divergent shaped microchannel(Two-dimensional).The base fluid,water+CMC(0.5%...This article aims tomodel and analyze the heat and fluid flow characteristics of a carboxymethyl cellulose(CMC)nanofluid within a convergent-divergent shaped microchannel(Two-dimensional).The base fluid,water+CMC(0.5%),is mixed with CuO and Al2O3 nanoparticles at volume fractions of 0.5%and 1.5%,respectively.The research is conducted through the conjugate usage of experimental and theoretical models to represent more realistic properties of the non-Newtonian nanofluid.Three types of microchannels including straight,divergent,and convergent are considered,all having the same length and identical inlet cross-sectional area.Using ANSYS FLUENT software,Navier-Stokes equations are solved for the laminar flow of the non-Newtonian nanofluid.The study examines the effects of Reynolds number,nanoparticle concentration and type,and microchannel geometry on flow and heat transfer.The results prove that the alumina nanoparticles outperform copper oxide in increasing the Nusselt number at a 0.5% volume fraction,while copper oxide nanoparticles excel at a 1.5%volume fraction.Moreover,in the selected case study,as the Reynolds number increases from 100 to 500,the Nusselt number rises by 56.26% in straight geometry,52.93% in divergent geometry,and 59.10%in convergent geometry.Besides,the Nusselt number enhances by 18.75% when transitioning from straight to convergent geometry at a Reynolds number of 500,and by 19.81%at a Reynolds number of 1000.Finally,the results of the research depict that the use of thermophysical properties derived from the experimental achievements,despite creating complexity in the modeling and the solution method,leads to more accurate and realistic outputs.展开更多
A cased well model consists of a coaxial tank and casing,which houses coaxially installed transmitting and receiving coils.The transmitting coil is excited by the current produced by the transmitting circuit,and trans...A cased well model consists of a coaxial tank and casing,which houses coaxially installed transmitting and receiving coils.The transmitting coil is excited by the current produced by the transmitting circuit,and transient electromagnetic responses occur in the casing,including direct coupling and casing responses.As the range between the transmitting and receiving coils increases,direct coupling responses decay rapidly,are less than the casing response at 0.3 m,and disappear at 0.7 m.By contrast,a casing response increases rapidly and then declines slowly after reaching a peak and changes little within a specifi c range.The peak decreases slowly with range.The continuous addition of water to the tank causes slight changes in transient electromagnetic responses,so the diff erence which are subtracted from the response without water is used.Moreover,the diff erences at the time of rapid increase in response and the time of rapid decrease in response are large,forming a peak and a trough.Given that the conductivity of water in a full tank changes after the addition of salt,the diff erence in the peak is linear with the increase in the conductivity of water.This result provides an experimental basis for the design of a transient electromagnetic logging instrument that measures the conductivity of formation in cased well.展开更多
The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical ...The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.展开更多
In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer...In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank.展开更多
Objective The present study aimed to establish a cerebral schistosomiasis model in rabbits,to provide a valuable tool for morphological analysis,clinical manifestation observation,as well as investigations into immuno...Objective The present study aimed to establish a cerebral schistosomiasis model in rabbits,to provide a valuable tool for morphological analysis,clinical manifestation observation,as well as investigations into immunological reactions and pathogenesis of focal inflammatory reaction in neuroschistosomiasis(NS).Methods Sixty New Zealand rabbits were randomly assigned into operation,sham-operation and normal groups.Rabbits in the operation group received direct injection of dead schistosome eggs into the brain,while their counterparts in the sham-operation group received saline injection.Rabbits in the normal group received no treatment.Base on the clinical manifestations,rabbits were sacrificed on days 3,5,7,10,20,and 30 post injection,and brain samples were sectioned and stained with hematoxylin-eosin.Sections were observed under the microscope.Results The rabbits in the operation group exhibited various neurological symptoms,including anorexy,partial and general seizures,and paralysis.The morphological analysis showed several schistosome eggs in the nervous tissue on day 3 post operation,with very mild inflammation.On days 7-10 post operation,several schistosome eggs were localized in proximity to red blood cells with many neutrophilic granulocytes and eosinophilic granulocytes around them.The schistosome eggs developed into the productive granuloma stage on days 14-20 post operation.On day 30,the schistosome eggs were found to be in the healing-by-fibrosis stage,and the granuloma area was replaced by fibrillary glia through astrocytosis.The sham-operation group and the normal group showed negative results.Conclusion This method might be used to establish the cerebral schistosomiasis experimental model.Several factors need to be considered in establishing this model,such as the antigenic property of eggs,the time of scarification,and the clinical manifestations.展开更多
To ensure the long-term and sustainable development and utilization of geothermal resources,the extracted geothermal water should be reinjected.Considering Guantao Formation in the Dezhou Area,the geothermal reinjecti...To ensure the long-term and sustainable development and utilization of geothermal resources,the extracted geothermal water should be reinjected.Considering Guantao Formation in the Dezhou Area,the geothermal reinjection process is analyzed through experimental and numerical modeling.Numerical analysis suggests that the reinjectionflow only has a strong influence on the reservoir pressure over a relatively narrow range,whereas the range over which this process has a weak influence exceeds 500 m.Assuming that the reinjection well is full,a reinjectionflow rate of 50-100 m^(3)/h can theoretically be achieved without additional pressure.Experimental modeling of geothermal exploitation and reinjection suggests that sandstone reservoirs with good porosity and permeability should be selected to lower the reinjection pressure of geothermal reservoir projects.In real geothermal reinjection processes,the reinjectionflow rate should be carefully determined to prevent excessive pressure in sandstone reservoirs and ensure long-term stable and efficient reinjection.The Huaneng Geothermal Project has been operating for 2 years,and there has been no significant change in the outlet temperature and reinjection pressure of the geothermal wells.This is generally consistent with the modeling results,demonstrating the accuracy of the exploitation and reinjection modeling analysis.An efficient reinjection scheme for sandstone geothermal reservoirs is developed based on the Huaneng Dezhou Geothermal Heating Project,in which the total reinjection rate is approximately 99.1%.Based on our experimental and numerical modeling,no significant temperature and pressure changes will happen for at least 5 years at the present exploitation and reinjection pressure and amount.展开更多
Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure a...Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure air.To initiate ionization waves in a quartz tube,an electrodeless pulse-periodic discharge fed by microsecond voltage pulses with an amplitude of a few kilovolts and a repetition rate of tens of kHz were formed.In this case ionization waves(streamers)have a length of tens of centimeters.The main plasma parameters were measured at various distances along the tube.The measurements confirm the fact that ionization waves propagate in opposite directions from the zone of the main electrodeless discharge,just as it happens during the formation of red sprites.展开更多
Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory ...Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.展开更多
Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chron...Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chronic seizures are difficult to cure. MicroRNAs are widely expressed in the central nervous system and play important roles in the pathogenesis of several neurological disorders, including epilepsy. A variety of animals(mostly mice and rats) have been used to induce experimental epilepsy using different protocols and miRNA profiling performed. Most of the recent studies reviewed had performed miRNA profiling in hippocampal tissues and a large number of microRNAs were dysregulated when compared to controls. Most notably, miR-132-3p,-146a-5p,-10a-5p,-21a-3p,-27a-3p,-142a-5p,-212-3p,-431-5p, and-155 were upregulated in both the mouse and rat studies. Overexpression of miR-137 and miR-219 decreased seizure severity in a mouse epileptic model, and suppression of miR-451,-10a-5p,-21a-5p,-27a-5p,-142a-5p,-431-5p,-155, and-134 had a positive influence on seizure behavior. In the rat studies, overexpression of miR-139-5p decreased neuronal damage in drug-resistant rats and inhibition of miR-129-2-3p,-27a-3p,-155,-134,-181a, and-146a had a positive effect on seizure behavior and/or reduced the loss of neuronal cells. Further studies are warranted using adult female and immature male and female animals. It would also be helpful to test the ability of specific agomirs and antagomirs to control seizure activity in a subhuman primate model of epilepsy such as adult marmosets injected intraperitoneally with pilocarpine or cynomolgus monkeys given intrahippocampal injections of kainic acid.展开更多
In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor...In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.展开更多
A conventional turbulence inhibitor is compared with a swirling chamber from the points of view of fluid flow and removal rate of inclusion in the tundish. Comparing the RTD curves, inclusion removals, and the streaml...A conventional turbulence inhibitor is compared with a swirling chamber from the points of view of fluid flow and removal rate of inclusion in the tundish. Comparing the RTD curves, inclusion removals, and the streamlines in water model experiments, it can be found that the tundish equipped with a swirling chamber has a great effect on improving the flow field, and the floatation rate of inclusion is higher than the tundish with a turbulence inhibitor. Because of the introduction of the swirling chamber, the flow field and inclusion removal in a two-strand swirling flow tundish are asymmetrical. Rotating the inlet direction of swirling chamber 60 degree is a good strategy to improve the asymmetrical flow field.展开更多
Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and bra...Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and brain parenchyma,has attracted growing attention due to its high mortality and disability rates.Understanding the infectious routes of neurotropic viruses and the mechanism underlying the host immune response is critical to reduce viral spread and improve antiviral therapy outcomes.In this review,we summarize the common categories of neurotropic viruses,viral transmission routes in the body,host immune responses,and experimental animal models used for VE study to gain a deeper understanding of recent progress in the pathogenic and immunological mechanisms under neurotropic viral infection.This review should provide valuable resources and perspectives on how to cope with pandemic infections.展开更多
A new multi-functional bridge seismic isolation bearing(MFBSIB) is designed and its mechanical model is developed in this paper.Combining an upper sliding device and a lower energy dispassion isolation device effectiv...A new multi-functional bridge seismic isolation bearing(MFBSIB) is designed and its mechanical model is developed in this paper.Combining an upper sliding device and a lower energy dispassion isolation device effectively,the new MFBSIB can adjust the deformation caused by temperature,vehicle breaks,and concrete creep,etc.,in addition to dissipating energy.The switch of 'slide-isolation' is achieved and the efficiency of both upper and lower parts is validated through experiment with a model.The shear performance curve established in this paper is verified to be efficient in describing the mechanical characteristics of the bearing through experiment.It is proved through both numerical calculation and experimental analysis that the new MFBSIB is endowed with enough vertical rigidity,good energy dissipation ability,stable overall performance,and good realization in expected goals.Its performance is slightly influenced by shear stress,while affected by vertical pressure,loading frequency,slide limit,etc.,diversely.The results could provide reference for study and application of the new MFBSIB.展开更多
Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking t...Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking table to simulate the response of submarine pipelines under dynamic input. In consideration of the effects of the terrestrial and submarine pipeline, water depth, support condition, distance from seabed, empty and full pipeline, and span on dynamic response, 120 groups of experiments are conducted. Affecting factors are analyzed and conclusions are drawn for reference. For the control of dynamic response, the span of a submarine pipeline is by far more important than the other factors. Meanwhile, the rosponse difference between a submarine pipeline under sine excitation and that under random excitation exists in experiments.展开更多
To predict the flutter dynamic pressure of a wind tunnel model before flutter test,an accurate Computational Fluid Dynamics/Computational Structural Dynamics(CFD/CSD)-based flutter prediction method is proposed under ...To predict the flutter dynamic pressure of a wind tunnel model before flutter test,an accurate Computational Fluid Dynamics/Computational Structural Dynamics(CFD/CSD)-based flutter prediction method is proposed under the conditions of a 2.4 m×2.4 m transonic wind tunnel with porous wall.From the CFD simulations of the flows through an inclined hole of this wind tunnel,the Nambu's linear porous wall model between the flow rate and the differential pressure is extended to the porous wall with inclined holes,so that the porous wall can be conveniently modeled as a boundary condition.According to the flutter testing approach for the current wind tunnel,the steady CFD calculation is conducted to achieve the required inlet Mach number.A timedomain CFD/CSD method is then employed to evaluate the structural response of the experimental model,and the critical flutter point is obtained by increasing the dynamic pressure step by step at a fixed Mach number.The present method is applied to the flutter calculations for a vertical tail model and an aircraft model tested in the current transonic wind tunnel.For both models,the computed flutter characteristics agree well with the experimental results.展开更多
基金Project partly supported by Australian Research Council and NSW Agriculture.
文摘An incubation experiment was conducted to simulate the effect of flooding onwater deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated 'floodwater'could be deoxygenated immediately following 'flooding' and it is likelythat this was caused mainlyby decomposition of organic debris from the inundated plants. Deoxygenation eventually led to thedepletion of dissolved oxygen (DO) in the 'floodwater' and it is highly possible that this resultedin the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide. and organic nitrogento ammonia (ammonification). The accumulation of these reduced substances allows the 'floodwater'to develop DO-consuming capacity (DOCC). When the 'floodwater' is mixed with the introducedoxygenated water, apart from the dilution effects, the reduced substances contained in the'floodwater' oxidize to further consume DO carried by the introduced water. However, it appears thatthe DO drop in the mixed water can only last for a few hours if no additional DO-depleted'floodwater' is added. Entry of atmospheric oxygen into the water can raise the DO level of themixed water arid lower water pH through the oxidation of the reduced substances.
文摘Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.
基金financial support of this study by the National Natural Science Foundation of China (NSFC No. 20876085)
文摘Spray coating of polymer latex onto fertilizer particles in a fiuidized bed for producing controlled-release urea is an environment friendly technology as it does not need any toxic organic solvent. Since the spray coating process in a fluidized bed occurs in the presence of particle collisions, the coating of the particles is random, intermittent and multiple, thus making it difficult to investigate the film formation process. In this paper, an experimental model apparatus was designed and used to investigate the effects of the key factors in the spray coating process. This apparatus reasonably simplified the complex process to avoid particle collisions and randomness in the coating. The intermittent coating in the fluidized bed was modeled by periodic coating and dewatering in the experimental apparatus. A large area film was obtained, and the film permeability was measured. The effects of atomizing gas flow rate, spray rate of latex, solid content of latex and gas temperature on film structure and film permeability were investigated. It was found that water transfer played a dominant role in the spray coating process.
基金United Arab Emirates University,Grant/Award Number:12R104 and 12R121。
文摘Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.
文摘This article aims tomodel and analyze the heat and fluid flow characteristics of a carboxymethyl cellulose(CMC)nanofluid within a convergent-divergent shaped microchannel(Two-dimensional).The base fluid,water+CMC(0.5%),is mixed with CuO and Al2O3 nanoparticles at volume fractions of 0.5%and 1.5%,respectively.The research is conducted through the conjugate usage of experimental and theoretical models to represent more realistic properties of the non-Newtonian nanofluid.Three types of microchannels including straight,divergent,and convergent are considered,all having the same length and identical inlet cross-sectional area.Using ANSYS FLUENT software,Navier-Stokes equations are solved for the laminar flow of the non-Newtonian nanofluid.The study examines the effects of Reynolds number,nanoparticle concentration and type,and microchannel geometry on flow and heat transfer.The results prove that the alumina nanoparticles outperform copper oxide in increasing the Nusselt number at a 0.5% volume fraction,while copper oxide nanoparticles excel at a 1.5%volume fraction.Moreover,in the selected case study,as the Reynolds number increases from 100 to 500,the Nusselt number rises by 56.26% in straight geometry,52.93% in divergent geometry,and 59.10%in convergent geometry.Besides,the Nusselt number enhances by 18.75% when transitioning from straight to convergent geometry at a Reynolds number of 500,and by 19.81%at a Reynolds number of 1000.Finally,the results of the research depict that the use of thermophysical properties derived from the experimental achievements,despite creating complexity in the modeling and the solution method,leads to more accurate and realistic outputs.
基金supported by the National Natural Science Foundation of China (grant nos. 42074137)。
文摘A cased well model consists of a coaxial tank and casing,which houses coaxially installed transmitting and receiving coils.The transmitting coil is excited by the current produced by the transmitting circuit,and transient electromagnetic responses occur in the casing,including direct coupling and casing responses.As the range between the transmitting and receiving coils increases,direct coupling responses decay rapidly,are less than the casing response at 0.3 m,and disappear at 0.7 m.By contrast,a casing response increases rapidly and then declines slowly after reaching a peak and changes little within a specifi c range.The peak decreases slowly with range.The continuous addition of water to the tank causes slight changes in transient electromagnetic responses,so the diff erence which are subtracted from the response without water is used.Moreover,the diff erences at the time of rapid increase in response and the time of rapid decrease in response are large,forming a peak and a trough.Given that the conductivity of water in a full tank changes after the addition of salt,the diff erence in the peak is linear with the increase in the conductivity of water.This result provides an experimental basis for the design of a transient electromagnetic logging instrument that measures the conductivity of formation in cased well.
文摘The high temperature split Hopkinson pressure bar (SHPB) compression experiment is conducted to obtain the data relationship among strain, strain rate and flow stress from room temperature to 550 C for aeronautical aluminum alloy 7050-T7451. Combined high-speed orthogonal cutting experiments with the cutting process simulations, the data relationship of high temperature, high strain rate and large strain in high-speed cutting is modified. The Johnson-Cook empirical model considering the effects of strain hardening, strain rate hardening and thermal softening is selected to describe the data relationship in high-speed cutting, and the material constants of flow stress constitutive model for aluminum alloy 7050-T7451 are determined. Finally, the constitutive model of aluminum alloy 7050-T7451 is established through experiment and simulation verification in high-speed cutting. The model is proved to be reasonable by matching the measured values of the cutting force with the estimated results from FEM simulations.
基金Project(07JJ4016) supported by the Natural Science Foundation of Hunan Procvince,China
文摘In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank.
基金supported by the Science Foundation of the Department of Health,Hubei Province,China (No.XF06D43,XF2008-23)
文摘Objective The present study aimed to establish a cerebral schistosomiasis model in rabbits,to provide a valuable tool for morphological analysis,clinical manifestation observation,as well as investigations into immunological reactions and pathogenesis of focal inflammatory reaction in neuroschistosomiasis(NS).Methods Sixty New Zealand rabbits were randomly assigned into operation,sham-operation and normal groups.Rabbits in the operation group received direct injection of dead schistosome eggs into the brain,while their counterparts in the sham-operation group received saline injection.Rabbits in the normal group received no treatment.Base on the clinical manifestations,rabbits were sacrificed on days 3,5,7,10,20,and 30 post injection,and brain samples were sectioned and stained with hematoxylin-eosin.Sections were observed under the microscope.Results The rabbits in the operation group exhibited various neurological symptoms,including anorexy,partial and general seizures,and paralysis.The morphological analysis showed several schistosome eggs in the nervous tissue on day 3 post operation,with very mild inflammation.On days 7-10 post operation,several schistosome eggs were localized in proximity to red blood cells with many neutrophilic granulocytes and eosinophilic granulocytes around them.The schistosome eggs developed into the productive granuloma stage on days 14-20 post operation.On day 30,the schistosome eggs were found to be in the healing-by-fibrosis stage,and the granuloma area was replaced by fibrillary glia through astrocytosis.The sham-operation group and the normal group showed negative results.Conclusion This method might be used to establish the cerebral schistosomiasis experimental model.Several factors need to be considered in establishing this model,such as the antigenic property of eggs,the time of scarification,and the clinical manifestations.
基金funded by the Huaneng Group Technology Project‘Geothermal energy exploration,development and area selection in Fujian Province’(TY-21-HJK09)‘Research and application of thermal energy evaluation and gas coupling technology in Fengdong Huaneng Heating Zone’(HNKJ23QN203)‘Research and application of exploration and evaluation of different types of geothermal resources in Shandong Region coupled with clean heating technology’(HNKJ24H021)。
文摘To ensure the long-term and sustainable development and utilization of geothermal resources,the extracted geothermal water should be reinjected.Considering Guantao Formation in the Dezhou Area,the geothermal reinjection process is analyzed through experimental and numerical modeling.Numerical analysis suggests that the reinjectionflow only has a strong influence on the reservoir pressure over a relatively narrow range,whereas the range over which this process has a weak influence exceeds 500 m.Assuming that the reinjection well is full,a reinjectionflow rate of 50-100 m^(3)/h can theoretically be achieved without additional pressure.Experimental modeling of geothermal exploitation and reinjection suggests that sandstone reservoirs with good porosity and permeability should be selected to lower the reinjection pressure of geothermal reservoir projects.In real geothermal reinjection processes,the reinjectionflow rate should be carefully determined to prevent excessive pressure in sandstone reservoirs and ensure long-term stable and efficient reinjection.The Huaneng Geothermal Project has been operating for 2 years,and there has been no significant change in the outlet temperature and reinjection pressure of the geothermal wells.This is generally consistent with the modeling results,demonstrating the accuracy of the exploitation and reinjection modeling analysis.An efficient reinjection scheme for sandstone geothermal reservoirs is developed based on the Huaneng Dezhou Geothermal Heating Project,in which the total reinjection rate is approximately 99.1%.Based on our experimental and numerical modeling,no significant temperature and pressure changes will happen for at least 5 years at the present exploitation and reinjection pressure and amount.
基金funded by the Ministry of Science and Higher Education of the Russian Federation within Agreement no.075-15-2021-1026 of November 15,2021.
文摘Over the past three decades,research of high-altitude atmospheric discharges has received a lot of attention.This paper presents the results of experimental modeling of red sprites during a discharge in low-pressure air.To initiate ionization waves in a quartz tube,an electrodeless pulse-periodic discharge fed by microsecond voltage pulses with an amplitude of a few kilovolts and a repetition rate of tens of kHz were formed.In this case ionization waves(streamers)have a length of tens of centimeters.The main plasma parameters were measured at various distances along the tube.The measurements confirm the fact that ionization waves propagate in opposite directions from the zone of the main electrodeless discharge,just as it happens during the formation of red sprites.
基金supported by the China Postdoctoral Science Foundation (no. 2020M670599)
文摘Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.
文摘Epilepsy is a common and serious neurological disease that causes recurrent seizures. The brain damage caused by seizures can lead to depression, anxiety, cognitive impairment, or disability. In almost all cases chronic seizures are difficult to cure. MicroRNAs are widely expressed in the central nervous system and play important roles in the pathogenesis of several neurological disorders, including epilepsy. A variety of animals(mostly mice and rats) have been used to induce experimental epilepsy using different protocols and miRNA profiling performed. Most of the recent studies reviewed had performed miRNA profiling in hippocampal tissues and a large number of microRNAs were dysregulated when compared to controls. Most notably, miR-132-3p,-146a-5p,-10a-5p,-21a-3p,-27a-3p,-142a-5p,-212-3p,-431-5p, and-155 were upregulated in both the mouse and rat studies. Overexpression of miR-137 and miR-219 decreased seizure severity in a mouse epileptic model, and suppression of miR-451,-10a-5p,-21a-5p,-27a-5p,-142a-5p,-431-5p,-155, and-134 had a positive influence on seizure behavior. In the rat studies, overexpression of miR-139-5p decreased neuronal damage in drug-resistant rats and inhibition of miR-129-2-3p,-27a-3p,-155,-134,-181a, and-146a had a positive effect on seizure behavior and/or reduced the loss of neuronal cells. Further studies are warranted using adult female and immature male and female animals. It would also be helpful to test the ability of specific agomirs and antagomirs to control seizure activity in a subhuman primate model of epilepsy such as adult marmosets injected intraperitoneally with pilocarpine or cynomolgus monkeys given intrahippocampal injections of kainic acid.
文摘In the water modeling experiments, three cases were considered, i. e, , a bare tundish, a tundish equipped with a turbulence inhibitor, and a rectangular tundish equipped with weirs (dams) and a turbulence inhibitor. Comparing the RTD curves, inclusion separation, and the result of the streamline experiment, it can be found that the tundish equipped with weirs (dams) and a turbulence inhibitor has a great effect on the flow field and the inclusion separation when compared with the sole use or no use of the turbulent inhibitor or weirs (dams). In addition, the enlargement of the distance between the weir and dam will result in a better effect when the tundish equipped with weirs (dam) and a turbulence inhibitor was used.
文摘A conventional turbulence inhibitor is compared with a swirling chamber from the points of view of fluid flow and removal rate of inclusion in the tundish. Comparing the RTD curves, inclusion removals, and the streamlines in water model experiments, it can be found that the tundish equipped with a swirling chamber has a great effect on improving the flow field, and the floatation rate of inclusion is higher than the tundish with a turbulence inhibitor. Because of the introduction of the swirling chamber, the flow field and inclusion removal in a two-strand swirling flow tundish are asymmetrical. Rotating the inlet direction of swirling chamber 60 degree is a good strategy to improve the asymmetrical flow field.
基金supported by the National Natural Science Foundation of China(81825011,81930038,81961160738)Program of Shanghai Academic/Technology Research Leader(22XD1400800)Strategic Priority Research Program of the Chinese Academy of Sciences(XDB19030200)。
文摘Viral infections have led to many public health crises and pandemics in the last few centuries.Neurotropic virus infection-induced viral encephalitis(VE),especially the symptomatic inflammation of the meninges and brain parenchyma,has attracted growing attention due to its high mortality and disability rates.Understanding the infectious routes of neurotropic viruses and the mechanism underlying the host immune response is critical to reduce viral spread and improve antiviral therapy outcomes.In this review,we summarize the common categories of neurotropic viruses,viral transmission routes in the body,host immune responses,and experimental animal models used for VE study to gain a deeper understanding of recent progress in the pathogenic and immunological mechanisms under neurotropic viral infection.This review should provide valuable resources and perspectives on how to cope with pandemic infections.
基金Project supported by the National Natural Science Foundation of China(Nos.50725828,50908046,and 50978056)the Teaching&Scientific Research Fund for Excellent Young Teachers of Southeast University,the Basic Scientific&Research Fund of Southeast University(No Seucx201106)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘A new multi-functional bridge seismic isolation bearing(MFBSIB) is designed and its mechanical model is developed in this paper.Combining an upper sliding device and a lower energy dispassion isolation device effectively,the new MFBSIB can adjust the deformation caused by temperature,vehicle breaks,and concrete creep,etc.,in addition to dissipating energy.The switch of 'slide-isolation' is achieved and the efficiency of both upper and lower parts is validated through experiment with a model.The shear performance curve established in this paper is verified to be efficient in describing the mechanical characteristics of the bearing through experiment.It is proved through both numerical calculation and experimental analysis that the new MFBSIB is endowed with enough vertical rigidity,good energy dissipation ability,stable overall performance,and good realization in expected goals.Its performance is slightly influenced by shear stress,while affected by vertical pressure,loading frequency,slide limit,etc.,diversely.The results could provide reference for study and application of the new MFBSIB.
基金This research is financially supported by the Science and Technology Foundation of Liaoning Province (Grant No.972240)
文摘Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking table to simulate the response of submarine pipelines under dynamic input. In consideration of the effects of the terrestrial and submarine pipeline, water depth, support condition, distance from seabed, empty and full pipeline, and span on dynamic response, 120 groups of experiments are conducted. Affecting factors are analyzed and conclusions are drawn for reference. For the control of dynamic response, the span of a submarine pipeline is by far more important than the other factors. Meanwhile, the rosponse difference between a submarine pipeline under sine excitation and that under random excitation exists in experiments.
基金supported by the National Natural Science Foundation of China(No.11872212)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘To predict the flutter dynamic pressure of a wind tunnel model before flutter test,an accurate Computational Fluid Dynamics/Computational Structural Dynamics(CFD/CSD)-based flutter prediction method is proposed under the conditions of a 2.4 m×2.4 m transonic wind tunnel with porous wall.From the CFD simulations of the flows through an inclined hole of this wind tunnel,the Nambu's linear porous wall model between the flow rate and the differential pressure is extended to the porous wall with inclined holes,so that the porous wall can be conveniently modeled as a boundary condition.According to the flutter testing approach for the current wind tunnel,the steady CFD calculation is conducted to achieve the required inlet Mach number.A timedomain CFD/CSD method is then employed to evaluate the structural response of the experimental model,and the critical flutter point is obtained by increasing the dynamic pressure step by step at a fixed Mach number.The present method is applied to the flutter calculations for a vertical tail model and an aircraft model tested in the current transonic wind tunnel.For both models,the computed flutter characteristics agree well with the experimental results.