This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Using data from the 2022 China Family Panel Studies(CFPS),this study selects 11,375 dual-spouse households as the research sample and constructs a comprehensive housework division index via the entropy weight method.T...Using data from the 2022 China Family Panel Studies(CFPS),this study selects 11,375 dual-spouse households as the research sample and constructs a comprehensive housework division index via the entropy weight method.The index integrates four dimensions:participation subject,time allocation,content type,and fairness perception,aiming to explore the fairness level of housework division and group differences in Chinese households.The results show that the overall fairness of housework division in Chinese households is relatively low:the mean value of the index(after 10,000-fold linear expansion)is 0.0632,showing a significant right-skewed distribution,with most households concentrated in the"low-fairness"range and only a few achieving relatively balanced division.Significant group differences exist:rural households have a slightly higher housework division index(0.0659)than urban households(0.0608);male respondents have a higher index(0.0660)than female respondents(0.0603);and the high-education group has a significantly lower index(0.0501)than the low-education group(0.0653).The fairness of housework division is jointly influenced by structural factors and perceptual factors,with an obvious"concept-action gap":74.02%of respondents perceive housework division as"fair",but the low index level indicates this perception mostly stems from normative adaptation rather than objective balance.This study provides empirical evidence for optimizing family labor allocation and promoting gender equality.展开更多
Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extens...Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.展开更多
Although the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)model has been widely applied in water quality assessment by numerous studies,several common limitations remain unresolved.Specificall...Although the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)model has been widely applied in water quality assessment by numerous studies,several common limitations remain unresolved.Specifically:1)Subjective elements in methods such as fuzzy theory and the analytic hierarchy process(AHP)may distort evaluation outcomes;2)The utilization of raw sample data is in‐sufficient when constructing evaluation matrices;3)The traditional entropy weight method in TOPSIS merely reflects statistical character‐istics of the final matrix while neglecting richer information embedded in raw datasets.To address these issues,we proximate probability distribution function of various indicators by using cubic spline interpolation and fully exploit information in the existing massive sample data.In this paper,the entropy weight method is enhanced based on the concept mentioned above and integrated with TOPSIS model to construct a novel evaluation model.Furthermore,the experimental analysis using wastewater monitoring data from Guizhou Province,China,verifies its practicality,and its results provide valuable references for local water environmental management.展开更多
The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σ...The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.展开更多
[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of ...[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.展开更多
[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Meth...[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.展开更多
Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method w...Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method was introduced. This improved method for determination of weight of the evaluating indicators was applied in water quality assessment of the Three Gorges reservoir area. The results showed that this method was favorable for fuzzy synthetic evaluation when there were more than one evaluating objects. One calculation was enough for calculating every monitoring point. Compared with the original evaluation method, the method predigested the fuzzy synthetic evaluation process greatly and the evaluation results are more reasonable.展开更多
In complex networks,identifying influential spreader is of great significance for improving the reliability of networks and ensuring the safe and effective operation of networks.Nowadays,it is widely used in power net...In complex networks,identifying influential spreader is of great significance for improving the reliability of networks and ensuring the safe and effective operation of networks.Nowadays,it is widely used in power networks,aviation networks,computer networks,and social networks,and so on.Traditional centrality methods mainly include degree centrality,closeness centrality,betweenness centrality,eigenvector centrality,k-shell,etc.However,single centrality method is onesided and inaccurate,and sometimes many nodes have the same centrality value,namely the same ranking result,which makes it difficult to distinguish between nodes.According to several classical methods of identifying influential nodes,in this paper we propose a novel method that is more full-scaled and universally applicable.Taken into account in this method are several aspects of node’s properties,including local topological characteristics,central location of nodes,propagation characteristics,and properties of neighbor nodes.In view of the idea of the multi-attribute decision-making,we regard the basic centrality method as node’s attribute and use the entropy weight method to weigh different attributes,and obtain node’s combined centrality.Then,the combined centrality is applied to the gravity law to comprehensively identify influential nodes in networks.Finally,the classical susceptible-infected-recovered(SIR)model is used to simulate the epidemic spreading in six real-society networks.Our proposed method not only considers the four topological properties of nodes,but also emphasizes the influence of neighbor nodes from the aspect of gravity.It is proved that the new method can effectively overcome the disadvantages of single centrality method and increase the accuracy of identifying influential nodes,which is of great significance for monitoring and controlling the complex networks.展开更多
The objective of the research is to evaluate spatial groundwater quality based on improved fuzzy comprehensive assessment model with entropy weights(FCAEW)in geographical information system(GIS)environment.This paper ...The objective of the research is to evaluate spatial groundwater quality based on improved fuzzy comprehensive assessment model with entropy weights(FCAEW)in geographical information system(GIS)environment.This paper explores the method of comprehensive evaluation of groundwater and sets up an evaluation model applying GIS and FCAEW.Groundwater samples were collected and analyzed from 29 wells in Zhenping County,China.Six parameters were chosen including chloride,sulfate,total hardness,nitrate,fluoride and color.Better spatial interpolation methods for evaluated parameters are found out and selected according to the minimum cross-validation errors from the interpolation methods.FCAEW model was carried out with the help of GIS which makes the evaluating process simpler and easier and more automatically,effectively,efficiently and intelligently.The result embodies the feasibility and effectiveness of FCAEW in GIS when compared with other comprehensive evaluation methods.展开更多
Based on statistical data and population flow data for 2016,and using entropy weight TOPSIS and the obstacle degree model,the centrality of cities in the Yangtze River Economic Belt(YREB)together with the factors infl...Based on statistical data and population flow data for 2016,and using entropy weight TOPSIS and the obstacle degree model,the centrality of cities in the Yangtze River Economic Belt(YREB)together with the factors influencing centrality were measured.In addition,data for the population flow were used to analyze the relationships between cities and to verify centrality.The results showed that:(1)The pattern of centrality conforms closely to the pole-axis theory and the central geography theory.Two axes,corresponding to the Yangtze River and the Shanghai-Kunming railway line,interconnect cities of different classes.On the whole,the downstream cities have higher centrality,well-defined gradients and better development of city infrastructure compared with cities in the middle and upper reaches.(2)The economic scale and size of the population play a fundamental role in the centrality of cities,and other factors reflect differences due to different city classes.For most of the coastal cities or the capital cities in the central and western regions,factors that require long-term development such as industrial facilities,consumption,research and education provide the main competitive advantages.For cities that are lagging behind in development,transportation facilities,construction of infrastructure and fixed asset investment have become the main methods to achieve development and enhance competitiveness.(3)The mobility of city populations has a significant correlation with the centrality score,the correlation coefficients for the relationships between population mobility and centrality are all greater than 0.86(P<0.01).The population flow is mainly between high-class cities,or high-class and low-class cities,reflecting the high centrality and huge radiating effects of high-class cities.Furthermore,the cities in the YREB are closely linked to Guangdong and Beijing,reflecting the dominant economic status of Guangdong with its geographical proximity to the YREB and Beijing's enormous influence as the national political and cultural center,respectively.展开更多
Let (M,g, e^-fdv) be a smooth metric measure space. In this paper, we con- sider two nonlinear weighted p-heat equations. Firstly, we derive a Li-Yau type gradient estimates for the positive solutions to the followi...Let (M,g, e^-fdv) be a smooth metric measure space. In this paper, we con- sider two nonlinear weighted p-heat equations. Firstly, we derive a Li-Yau type gradient estimates for the positive solutions to the following nonlinear weighted p-heat equationand f is a smooth function on M under the assumptionthat the m-dimensional nonnegative Bakry-Emery Ricci curvature. Secondly, we show an entropy monotonicity formula with nonnegative m-dimensional Bakry-Emery Ricci curva- ture which is a generalization to the results of Kotschwar and Ni [9], Li [7].展开更多
The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, e...The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.展开更多
Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system ...Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration.展开更多
This article selects 8 main factors(the number of rural employees,total power of agricultural machinery,effective irrigation area of crops,growing area of grain crops,fertilizer consumption,electricity consumption in ...This article selects 8 main factors(the number of rural employees,total power of agricultural machinery,effective irrigation area of crops,growing area of grain crops,fertilizer consumption,electricity consumption in rural areas,area affected and area covered) as the factors influencing grain output,and offers the method of determining weight of factors influencing grain output using entropy weight method.According to the relevant data in the period 1985-2005,we analyze the weight of factors influencing grain output in China by example.The results show that the electricity consumption in rural areas has the greatest impact on grain output,followed by total power of agricultural machinery,fertilizer consumption and area covered.To increase grain output,we must enhance the degree of mechanization,free people from the former process of direct cultivation,strengthen water conservancy construction,and do a good job in disaster prevention and mitigation.展开更多
Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in...Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices.展开更多
Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the foc...Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the focus of many initiatives. Effectively analyzing massive network security data with high dimensions for suspicious flow diagnosis is a huge challenge. In addition, the uneven distribution of network traffic does not fully reflect the differences of class sample features, resulting in the low accuracy of attack detection. To solve these problems, a novel approach called the fuzzy entropy weighted natural nearest neighbor(FEW-NNN) method is proposed to enhance the accuracy and efficiency of flowbased network traffic attack detection. First, the FEW-NNN method uses the Fisher score and deep graph feature learning algorithm to remove unimportant features and reduce the data dimension. Then, according to the proposed natural nearest neighbor searching algorithm(NNN_Searching), the density of data points, each class center and the smallest enclosing sphere radius are determined correspondingly. Finally, a fuzzy entropy weighted KNN classification method based on affinity is proposed, which mainly includes the following three steps: 1、 the feature weights of samples are calculated based on fuzzy entropy values, 2、 the fuzzy memberships of samples are determined based on affinity among samples, and 3、 K-neighbors are selected according to the class-conditional weighted Euclidean distance, the fuzzy membership value of the testing sample is calculated based on the membership of k-neighbors, and then all testing samples are classified according to the fuzzy membership value of the samples belonging to each class;that is, the attack type is determined. The method has been applied to the problem of attack detection and validated based on the famous KDD99 and CICIDS-2017 datasets. From the experimental results shown in this paper, it is observed that the FEW-NNN method improves the accuracy and efficiency of flow-based network traffic attack detection.展开更多
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m...In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.展开更多
In order to evaluate the quality of water environment, the conception of entropy is applied in information science, and the entropy weight model is built to evaluate comprehensively water quality. The indexes weights ...In order to evaluate the quality of water environment, the conception of entropy is applied in information science, and the entropy weight model is built to evaluate comprehensively water quality. The indexes weights of water quality are determined by value of entropy. This kind of method is applied on evaluating water quality in the new water to be built. The result shows that the water quality in it which supply water is between grade Ⅲ and Ⅳ, and the result is similar to that of gray related method.展开更多
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
文摘Using data from the 2022 China Family Panel Studies(CFPS),this study selects 11,375 dual-spouse households as the research sample and constructs a comprehensive housework division index via the entropy weight method.The index integrates four dimensions:participation subject,time allocation,content type,and fairness perception,aiming to explore the fairness level of housework division and group differences in Chinese households.The results show that the overall fairness of housework division in Chinese households is relatively low:the mean value of the index(after 10,000-fold linear expansion)is 0.0632,showing a significant right-skewed distribution,with most households concentrated in the"low-fairness"range and only a few achieving relatively balanced division.Significant group differences exist:rural households have a slightly higher housework division index(0.0659)than urban households(0.0608);male respondents have a higher index(0.0660)than female respondents(0.0603);and the high-education group has a significantly lower index(0.0501)than the low-education group(0.0653).The fairness of housework division is jointly influenced by structural factors and perceptual factors,with an obvious"concept-action gap":74.02%of respondents perceive housework division as"fair",but the low index level indicates this perception mostly stems from normative adaptation rather than objective balance.This study provides empirical evidence for optimizing family labor allocation and promoting gender equality.
基金Project(52175445)supported by the National Natural Science Foundation of ChinaProject(2022JJ30743)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(2023GK2024)supported by the Key Research and Development Program of Hunan Province,ChinaProject(2023ZZTS0391)supported by the Fundamental Research Funds for the Central Universities of China。
文摘Red-green-blue(RGB)beam combiners are widely used in scenarios such as augmented reality/virtual reality(AR/VR),laser projection,biochemical detection,and other fields.Optical waveguide combiners have attracted extensive attention due to their advantages of small size,high multiplexing efficiency,convenient mass production,and low cost.An RGB beam combiner based on directional couplers is designed,with a core-cladding relative refractive index difference of 0.75%.The RGB beam combiner is optimized from the perspective of parameter optimization.Using the beam propagation method(BPM),the relationship between the performance of the RGB beam combiner and individual parameters is studied,achieving preliminary optimization of the device’s performance.The key parameters of the RGB beam combiner are optimized using the entropy weight-technique for order preference by similarity to an ideal solution TOPSIS method,establishing the optimal parameter scheme and further improving the device’s performance indicators.The results show that after optimization,the multiplexing efficiencies for red,green,and blue lights,as well as the average multiplexing efficiency,reached 99.17%,99.76%,96.63%and 98.52%,respectively.The size of the RGB beam combiner is 4.768 mm×0.062 mm.
文摘Although the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS)model has been widely applied in water quality assessment by numerous studies,several common limitations remain unresolved.Specifically:1)Subjective elements in methods such as fuzzy theory and the analytic hierarchy process(AHP)may distort evaluation outcomes;2)The utilization of raw sample data is in‐sufficient when constructing evaluation matrices;3)The traditional entropy weight method in TOPSIS merely reflects statistical character‐istics of the final matrix while neglecting richer information embedded in raw datasets.To address these issues,we proximate probability distribution function of various indicators by using cubic spline interpolation and fully exploit information in the existing massive sample data.In this paper,the entropy weight method is enhanced based on the concept mentioned above and integrated with TOPSIS model to construct a novel evaluation model.Furthermore,the experimental analysis using wastewater monitoring data from Guizhou Province,China,verifies its practicality,and its results provide valuable references for local water environmental management.
基金Projects(51474252,51274253)supported by the National Natural Science Foundation of ChinaProject(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(2016zzts095)supported by the Fundamental Research Funds for the Central Universities,China
文摘The method of cloud model with entropy weight was adopted for the prediction of rock burst classification. Some main factors of rock burst including the uniaxial compressive strength (σc), the tensile strength (σt), the tangential stress (σθ), the rock brittleness coefficient (σc/σt), the stress coefficient (σθ /σc) and the elastic energy index (Wet) are chosen to establish evaluation index system. The entropy?cloud model and criterion are obtained through 209 sets of rock burst samples from underground rock projects. The sensitivity of indicators is analyzed and 209 sets of rock burst samples are discriminated by this model. The discriminant results of the entropy-cloud model are compared with those of Bayes, KNN and RF methods. The results show that the sensitivity order of those factors from high to low is σ_θ /σ_c, σ_θ, W_(ct), σ_c/σ_t, σ_t, σ_c, and the entropy-cloud model has higher accuracy than Bayes, K-Nearest Neighbor algorithm (KNN) and Random Forest (RF) methods.
基金Supported by Jiangsu Agricultural Science and Technology Innovation Fund(CX(12)5035)Jiangsu Agricultural "Three New Engineering" Project(SXGC[2014]299)~~
文摘[Objective] The aim was to propose a new entropy weight fuzzy compre- hensive evaluation method for assessing cotton salt tolerance, realizing the objective, accurate and comprehensive evaluation of salt tolerance of cotton. [Method] A sand culture experiment under salt stress of 150 mmol/L of NaCI was designed. The in- dicator weight was determined with the entropy weight fuzzy comprehensive evalu- ation method, based on the salt injury index of indicators. The salt tolerance of cotton was evaluated comprehensively. [Result] At the germination stage, the entropy and weight of salt injury index of germination energy, vigor index, hypocotyl length and fresh weight were highest, followed by germination rate and germination index, and of root length were lowest. At the seedling stage, the entropy and weight of salt injury index of plasma membrane permeability, root vigor and leaf expansion rate were highest, followed by plant height and net photosynthetic rate, and of shoot dry weight and root dry weight were lowest. The salt tolerance of cotton differed a- mong growth stages and cultivars. Among the 11 cultivars, CCRI-44 and CCRI-75 were steadily salt-tolerant at both germination and seedling stages; CCRI-17, Sumi- an 22, Sumian 15 and Dexiamianl had a stable moderate salt tolerance; while Sumian 12 and Simian 3 were steadily salt-sensitive. [Conclusion] The evaluated result was objective and exact, which indicated that this method could be used in comprehensive evaluation of salt tolerance of cotton.
基金Supported by the Major Project of Application Foundation and Advanced Technology of Tianjin (the Natural Science Foundation of Tianjin) (09JCZDJC19200),China~~
文摘[Objective] This study was to provide references for the evaluation of water quality in aquaculture ponds by evaluating the pond water quality using fuzzy comprehensive evaluation method based on entropy weight. [Method] The fuzzy compre- hensive evaluation method based on entropy weight was used to evaluate the water quality in the ponds with Ukraine scale carp (Cyprinus carpio) as the main cultivated fish. The average size of the fish was 71.4 g/ind, and totally three groups of pond were set with the population density of 6 000, 9 000, 12 000 ind/hm2. [Result] According to the GB3838-2002 Environmental Quality Standards for Surface Water of China, the water quality of 6 000 ind/hm2 group was Grade I, and the water quality of 9 000 and 12 000 ind/hm2 were Grade V. [Conclusion] With the increasing of feeding density, the pond water quality would worsen, however, there is no difference on water quality between 9 000 and 12 000 ind/hm2 groups.
基金The National Natural Science Foundation of China (No. 50378008)
文摘Considering the difficulty of fuzzy synthetic evaluation method in calculation of the multiple factors and ignorance of the relationship among evaluating objects, a new weight evaluation process using entropy method was introduced. This improved method for determination of weight of the evaluating indicators was applied in water quality assessment of the Three Gorges reservoir area. The results showed that this method was favorable for fuzzy synthetic evaluation when there were more than one evaluating objects. One calculation was enough for calculating every monitoring point. Compared with the original evaluation method, the method predigested the fuzzy synthetic evaluation process greatly and the evaluation results are more reasonable.
基金Project support by the National Key Research and Development Program of China(Grant No.2018YFF0301000)the National Natural Science Foundation of China(Grant Nos.71673161 and 71790613)。
文摘In complex networks,identifying influential spreader is of great significance for improving the reliability of networks and ensuring the safe and effective operation of networks.Nowadays,it is widely used in power networks,aviation networks,computer networks,and social networks,and so on.Traditional centrality methods mainly include degree centrality,closeness centrality,betweenness centrality,eigenvector centrality,k-shell,etc.However,single centrality method is onesided and inaccurate,and sometimes many nodes have the same centrality value,namely the same ranking result,which makes it difficult to distinguish between nodes.According to several classical methods of identifying influential nodes,in this paper we propose a novel method that is more full-scaled and universally applicable.Taken into account in this method are several aspects of node’s properties,including local topological characteristics,central location of nodes,propagation characteristics,and properties of neighbor nodes.In view of the idea of the multi-attribute decision-making,we regard the basic centrality method as node’s attribute and use the entropy weight method to weigh different attributes,and obtain node’s combined centrality.Then,the combined centrality is applied to the gravity law to comprehensively identify influential nodes in networks.Finally,the classical susceptible-infected-recovered(SIR)model is used to simulate the epidemic spreading in six real-society networks.Our proposed method not only considers the four topological properties of nodes,but also emphasizes the influence of neighbor nodes from the aspect of gravity.It is proved that the new method can effectively overcome the disadvantages of single centrality method and increase the accuracy of identifying influential nodes,which is of great significance for monitoring and controlling the complex networks.
基金supported by the National Natural Science Foundation of China(No.41161020)the Introduction of Talent Project of Ningxia University(No.BQD2012013)the Natural Science Foundation of Ningxia University(No.ZR1209)
文摘The objective of the research is to evaluate spatial groundwater quality based on improved fuzzy comprehensive assessment model with entropy weights(FCAEW)in geographical information system(GIS)environment.This paper explores the method of comprehensive evaluation of groundwater and sets up an evaluation model applying GIS and FCAEW.Groundwater samples were collected and analyzed from 29 wells in Zhenping County,China.Six parameters were chosen including chloride,sulfate,total hardness,nitrate,fluoride and color.Better spatial interpolation methods for evaluated parameters are found out and selected according to the minimum cross-validation errors from the interpolation methods.FCAEW model was carried out with the help of GIS which makes the evaluating process simpler and easier and more automatically,effectively,efficiently and intelligently.The result embodies the feasibility and effectiveness of FCAEW in GIS when compared with other comprehensive evaluation methods.
基金National Natural Science Foundation of China,No.41871176The“Hua Bo”Plan of Central China Normal UniversityPostgraduate Education Innovation Subsidy Project of Central China Normal University,No.2018CXZZ004。
文摘Based on statistical data and population flow data for 2016,and using entropy weight TOPSIS and the obstacle degree model,the centrality of cities in the Yangtze River Economic Belt(YREB)together with the factors influencing centrality were measured.In addition,data for the population flow were used to analyze the relationships between cities and to verify centrality.The results showed that:(1)The pattern of centrality conforms closely to the pole-axis theory and the central geography theory.Two axes,corresponding to the Yangtze River and the Shanghai-Kunming railway line,interconnect cities of different classes.On the whole,the downstream cities have higher centrality,well-defined gradients and better development of city infrastructure compared with cities in the middle and upper reaches.(2)The economic scale and size of the population play a fundamental role in the centrality of cities,and other factors reflect differences due to different city classes.For most of the coastal cities or the capital cities in the central and western regions,factors that require long-term development such as industrial facilities,consumption,research and education provide the main competitive advantages.For cities that are lagging behind in development,transportation facilities,construction of infrastructure and fixed asset investment have become the main methods to achieve development and enhance competitiveness.(3)The mobility of city populations has a significant correlation with the centrality score,the correlation coefficients for the relationships between population mobility and centrality are all greater than 0.86(P<0.01).The population flow is mainly between high-class cities,or high-class and low-class cities,reflecting the high centrality and huge radiating effects of high-class cities.Furthermore,the cities in the YREB are closely linked to Guangdong and Beijing,reflecting the dominant economic status of Guangdong with its geographical proximity to the YREB and Beijing's enormous influence as the national political and cultural center,respectively.
基金supported by the Fundamental Research Fund for the Central Universities
文摘Let (M,g, e^-fdv) be a smooth metric measure space. In this paper, we con- sider two nonlinear weighted p-heat equations. Firstly, we derive a Li-Yau type gradient estimates for the positive solutions to the following nonlinear weighted p-heat equationand f is a smooth function on M under the assumptionthat the m-dimensional nonnegative Bakry-Emery Ricci curvature. Secondly, we show an entropy monotonicity formula with nonnegative m-dimensional Bakry-Emery Ricci curva- ture which is a generalization to the results of Kotschwar and Ni [9], Li [7].
基金Supported by the National Natural Science Foundation of China(30400275)the Tackle Key Problems of Heilongjiang Province(the Hobbledehoy Science Fund of Heilongjiang Province)(QC04C28)
文摘The research of groundwater vulnerability is the basic work to protect the groundwater. For utilizing groundwater resource continuably, groundwater vulnerability evaluation is necessary. Useful reference to protect, exploit and utilize on groundwater resource are provided rationally. According to the real condition of Sanjiang Plain, the indexes system is established based on the traditional DRASTIC model. The new system includes the following seven indexes: Depth of Water, Net Recharge, Aquifer Media, Soil Media, Conductivity of the Aquifer, Land Utilizing Ratio and Populace Density. The related analysis appears that the system is rather reasonable. Because traditional methods, such as analytic hierarchy process and fuzzy mathematics theory, can't be avoided human interference in selection of weights, they could lead to an imprecise result. In order to evaluate the groundwater vulnerability reasonably, entropy weight coefficient method is applied for the first time, which provides a new way to groundwater vulnerability evaluation. The method is a model whose weights are insured by the calculation process, so the artificial disturb can be avoided. It has been used to evaluate the groundwater vulnerability in Sanjiang Plain. The satisfied result is acquired. Comparably, the same result is acquired by the other method named projection pursuit evaluation based on real-coded accelerating genetic algorithm. It shows that entropy weight coefficient method is applicable on groundwater vulnerability evaluation. The evaluation result can provide reference on the decision-making departments.
基金supported by Innovation Fund Program of China Electric Power Research Institute(NY83-19-003)
文摘Large-scale integration of wind power into a power system introduces uncertainties to its operation and planning,making the power system operation scenario highly diversified and variable.In conventional power system planning,some key operation modes and most critical scenarios are typically analyzed to identify the weak and high-risk points in grid operation.While these scenarios may not follow traditional empirical patterns due to the introduction of large-scale wind power.In this paper,we propose a weighted clustering method to quickly identify a system’s extreme operation scenarios by considering the temporal variations and correlations between wind power and load to evaluate the stability and security for system planning.Specifically,based on an annual time-series data of wind power and load,a combined weighted clustering method is used to pick the typical scenarios of power grid operation,and the edge operation points far from the clustering center are extracted as the extreme scenarios.The contribution of fluctuations and capacities of different wind farms and loads to extreme scenarios are considered in the clustering process,to further improve the efficiency and rationality of the extreme-scenario extraction.A set of case studies was used to verify the performance of the method,providing an intuitive understanding of the extreme scenario variety under wind power integration.
文摘This article selects 8 main factors(the number of rural employees,total power of agricultural machinery,effective irrigation area of crops,growing area of grain crops,fertilizer consumption,electricity consumption in rural areas,area affected and area covered) as the factors influencing grain output,and offers the method of determining weight of factors influencing grain output using entropy weight method.According to the relevant data in the period 1985-2005,we analyze the weight of factors influencing grain output in China by example.The results show that the electricity consumption in rural areas has the greatest impact on grain output,followed by total power of agricultural machinery,fertilizer consumption and area covered.To increase grain output,we must enhance the degree of mechanization,free people from the former process of direct cultivation,strengthen water conservancy construction,and do a good job in disaster prevention and mitigation.
基金supported by the National Natural Science Foundation of China(Grant Nos.61201173 and 61304154)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133219120032)+1 种基金the Postdoctoral Science Foundation of China(Grant No.2013M541673)China Postdoctoral Science Special Foundation(Grant No.2015T80556)
文摘Information entropy has been proved to be an effective tool to quantify the structural importance of complex networks.In a previous work [Xu et al. Physica A, 456 294(2016)], we measure the contribution of a path in link prediction with information entropy. In this paper, we further quantify the contribution of a path with both path entropy and path weight,and propose a weighted prediction index based on the contributions of paths, namely weighted path entropy(WPE), to improve the prediction accuracy in weighted networks. Empirical experiments on six weighted real-world networks show that WPE achieves higher prediction accuracy than three other typical weighted indices.
基金the Natural Science Foundation of China (No. 61802404, 61602470)the Strategic Priority Research Program (C) of the Chinese Academy of Sciences (No. XDC02040100)+3 种基金the Fundamental Research Funds for the Central Universities of the China University of Labor Relations (No. 20ZYJS017, 20XYJS003)the Key Research Program of the Beijing Municipal Science & Technology Commission (No. D181100000618003)partially the Key Laboratory of Network Assessment Technology,the Chinese Academy of Sciencesthe Beijing Key Laboratory of Network Security and Protection Technology
文摘Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the focus of many initiatives. Effectively analyzing massive network security data with high dimensions for suspicious flow diagnosis is a huge challenge. In addition, the uneven distribution of network traffic does not fully reflect the differences of class sample features, resulting in the low accuracy of attack detection. To solve these problems, a novel approach called the fuzzy entropy weighted natural nearest neighbor(FEW-NNN) method is proposed to enhance the accuracy and efficiency of flowbased network traffic attack detection. First, the FEW-NNN method uses the Fisher score and deep graph feature learning algorithm to remove unimportant features and reduce the data dimension. Then, according to the proposed natural nearest neighbor searching algorithm(NNN_Searching), the density of data points, each class center and the smallest enclosing sphere radius are determined correspondingly. Finally, a fuzzy entropy weighted KNN classification method based on affinity is proposed, which mainly includes the following three steps: 1、 the feature weights of samples are calculated based on fuzzy entropy values, 2、 the fuzzy memberships of samples are determined based on affinity among samples, and 3、 K-neighbors are selected according to the class-conditional weighted Euclidean distance, the fuzzy membership value of the testing sample is calculated based on the membership of k-neighbors, and then all testing samples are classified according to the fuzzy membership value of the samples belonging to each class;that is, the attack type is determined. The method has been applied to the problem of attack detection and validated based on the famous KDD99 and CICIDS-2017 datasets. From the experimental results shown in this paper, it is observed that the FEW-NNN method improves the accuracy and efficiency of flow-based network traffic attack detection.
基金Project(61301095)supported by the National Natural Science Foundation of ChinaProject(QC2012C070)supported by Heilongjiang Provincial Natural Science Foundation for the Youth,ChinaProjects(HEUCF130807,HEUCFZ1129)supported by the Fundamental Research Funds for the Central Universities of China
文摘In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value.
文摘In order to evaluate the quality of water environment, the conception of entropy is applied in information science, and the entropy weight model is built to evaluate comprehensively water quality. The indexes weights of water quality are determined by value of entropy. This kind of method is applied on evaluating water quality in the new water to be built. The result shows that the water quality in it which supply water is between grade Ⅲ and Ⅳ, and the result is similar to that of gray related method.