Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this...Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this work, we systematically study the entanglement entropy(EE) and derivative entanglement entropy(DEE) near quantum phase transitions in various quantum many-body systems. A one-parameter scaling relation between the DEE and system size at the critical point has been derived for the first time, which successfully obtains the critical exponent via data collapse. Furthermore, we find that the EE peaks at the(emergent) symmetryenhanced first-order transition, reflecting higher symmetry breaking. This work provides a new paradigm for quantum many-body research from the perspective of EE and DEE.展开更多
High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical ...High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.展开更多
An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of c...An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of curvature entropy.As its application,a novel proof of the log-Minkowski inequality of curvature entropy in the plane is given.展开更多
Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revol...Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revolution in the energy sector.Because of their clean,low-cost,and high-efficiency characteristics,SOCs have great potential for energy conversion and storage.However,the further development of SOC technologies faces challenges,such as a lack of long-term operational stability of the cell system,high material cost under high-temperature operating conditions,and limited catalytic effects at low temperatures.Recently,high-entropy materials(HEMs)have demonstrated excellent performance and wide application prospects in catalytic reactions,energy storage,supercapacitors,and other fields owing to their unique atomic arrangement and the four core effects(high mixed entropy stabilization effect,sluggish dif-fusion effect,lattice distortion effect,and“cocktail”effect).HEMs provide a new perspective for solving the aforementioned problems in the field of SOCs.This comprehensive review summarizes the applications of HEMs in the three fundamental components of SOCs:elec-trodes,electrolytes,and interconnects,focusing on the role of HEMs in enhancing catalytic activity and conductivity while mitigating harmful gas poisoning.In addition,this review proposes possible development directions for HEMs in SOCs based on the current re-search progress,providing valuable reference for high-entropy designs aimed at further enhancing the performance of SOCs.展开更多
High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature f...High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃.展开更多
In this paper,we study the Bowen entropy of stable sets in positive entropy G-system of amenable group actions.The lower bound of the Bowen entropy of these sets are estimated.
Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy...Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy.展开更多
The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and e...The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and enthalpy effects via a designed enthalpy-entropy plane (EE-plane) based on the Gibbs free energy equation and the introducing a charactering pseudo-unitary lattice (PUL) for entropy alloys. Based on the PUL scheme, the so-called four effects in high entropy alloys are simply nothing but the entropy effect with the other three accompanying effects: the distortion, slow diffusion and cocktail effects.展开更多
The inferior structure/electrochemistry stability due to the volume expansion and the less lithium storage active sites of transition metal oxide (TMO) are critical issue hindering their commercialization.The rational...The inferior structure/electrochemistry stability due to the volume expansion and the less lithium storage active sites of transition metal oxide (TMO) are critical issue hindering their commercialization.The rational design to utilize the combined advantages of both structure and composition is a key strategy to address these challenges.Here,the (FeCoNiMnCrMg)_(2)O_(3)high entropy oxide(HEO) with different morphologic structures are developed through integrating molecule and microstructure engineering.The morphologic structure of high entropy oxide transforms from solid spheres to multishelled core-shell spheres,and then to hollow spheres,which is governed by a thermally induced non-uniform shrinkage process coupled with Kirkendall effect diffusion due to the different calcination temperature.Even with the incorporation of various metallic ions,the high entropy oxide with a homogeneous single-phase solid solution maintained their shape and uniformity in size due to the ability of metal ions to coexist on the same lattice point.Benefiting from the meticulous control of both compositional and geometric factors,the hollow high entropy oxide exhibited a significantly high specific capacity (1722.1 mAh g^(-1)after 200cycles at 1 A g^(-1)) and long-life span for lithium storage(2158.7 mAh g^(-1)over 900 cycles at 4 A g^(-1)).The collaborative lattice and consistent volume demonstrated in this study offer significant potential in directing the development of materials for advanced energy storage solutions.展开更多
We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induc...We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics.展开更多
High-entropy carbides are increasingly favored as electromagnetic wave-absorbing materials because of their customizable structures and distinctive high-entropy effects.Nonetheless,the influence of entropy changes on ...High-entropy carbides are increasingly favored as electromagnetic wave-absorbing materials because of their customizable structures and distinctive high-entropy effects.Nonetheless,the influence of entropy changes on the absorptive characteristics of high-entropy carbide ceramics remains underexplored.In this work,the impact of increased entropy on the absorption characteristics of stable high-entropy transition metal carbides has been systematically studied.This work prepared three carbides ceramics with different entropy values:(Mo_(1/3)Nb_(1/3)Ta_(1/3))C,(Ti_(1/4)Mo_(1/4)Nb_(1/4)Ta_(1/4))C,and(Zr_(1/5)Ti_(1/5)Mo_(1/5)Nb_(1/5)Ta_(1/5))C.The impact of entropy variation in high-entropy carbide nanowires on their wave-absorbing properties was studied.The results showed excellent electromagnetic wave absorption,achieving a minimum reflection loss of−50.08 dB at 1.8 mm,and demonstrating an effective absorption bandwidth of 4.675 GHz at 1.7 mm.In addition,through detailed structure,morphology,and chemical state characterization,as well as wave absorption capability testing,research indicates that high-entropy carbides can effectively regulate defects by adjusting the size of entropy,leading to lattice distortion,discontinuous lattice fringes,and vacancies.The presence of these defects enhances the polarization loss and balances the excessively high dielectric constant of high-entropy carbide ceramics.Additionally,the design of one-dimensional structures facilitates carrier migration,thereby increasing conductive loss.Collectively,these factors enhance the ability of the samples to attenuate electromagnetic waves.This study lays a theoretical foundation and provides experimental guidance for developing new high-performance materials for electromagnetic wave absorption.展开更多
This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standar...This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-depo...Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.展开更多
The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (...The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (H/MEAs) still lacks effective atomic-scale composition design and screening schemes, which hinders the accurate prediction of desired composition and properties. This study proposes a novel approach for rapidly designing the composition of materials with the aim of overcoming the trade-off between strength and ductility in metal matrix composites. The effect of chemical composition on stacking fault energy (SFE), shear modulus, and phase stability was investigated through the use of molecular dynamics (MD) and thermodynamic calculation software. The alloy's low SFE, highest shear modulus, and stable face-centered cubic (FCC) phase have been identified as three standard physical quantities for rapid screening to characterize the deformation mechanism, ultimate tensile strength, phase stability, and ductility of the alloy. The calculation results indicate that the optimal composition space is expected to fall within the ranges of 17 %–34 % Ni, 33 %–50 % Co, and 25 %–33 % Mn. The comparison of stress-strain curves for various predicted components using simulated and experimental results serves to reinforce the efficacy of the method. This indicates that the screening criteria offer a necessary design concept, deviating from traditional strategies and providing crucial guidance for the rapid development and application of MEAs.展开更多
Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ord...Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.展开更多
Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxi...Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs.展开更多
In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entro...In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.展开更多
As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancin...As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.展开更多
The effect of oxygen on the microstructure,mechanical properties and deformation behaviours of as-cast biocompatible Ti40Zr25Nb25Ta10Ox(x=0.5,1.0 and 2.0 at.%)high entropy alloys(HEAs)was investi-gated.All three oxyge...The effect of oxygen on the microstructure,mechanical properties and deformation behaviours of as-cast biocompatible Ti40Zr25Nb25Ta10Ox(x=0.5,1.0 and 2.0 at.%)high entropy alloys(HEAs)was investi-gated.All three oxygen-doped HEAs solidified as a single body-centred cubic(BCC)phase grain structure with predominantly high-angle grain boundaries following the Mackenzie prediction.Increasing oxygen content significantly increased tensile strength at a rate of about 180 MPa/1.0 at.%,but decreased ten-sile ductility.However,at the addition level of 0.5 at.%O,the as-cast Ti40Zr25Nb25Ta10O0.5 HEA can achieve a yield strength(σ_(0.2))of 947±44 MPa and an elongation at break(ε_(f))of 9.5%±1.8%.These properties make this HEA comparable to medical grade Ti-6Al-4V(wt.%)alloy(ASTM Grade 23 titanium)(σ_(0.2)≥759 MPa;ε_(f)≥10%)in itsability to absorbenergy in plasticdeformation,whileoffering greater resistance to permanent shape changes.Due to the possible strong interaction between oxygen atoms and dislocations through pinning and de-pinning,all oxygen-doped HEAs exhibited discontinuous yield-ing,whereas the low oxygen base HEA underwent normal yielding.No oxygen clusters were detected through atom probe tomography(APT)analysis.The deformation mechanism depends on oxygen con-tent.The plastic deformation of the Ti40Zr25Nb25Ta10O0.5 HEA occurred through the formation of pri-mary and secondary shear bands.In contrast,planar slip bands and a limited number of primary shear bands(without secondary shear bands)were observed in the Ti40Zr25Nb25Ta10O2.0 HEA.To ensure suf-ficient ductility,the oxygen content should be limited to 0.5 at.%.Furthermore,at this oxygen content,the corrosion resistance of the Ti40Zr25Nb25Ta10O0.5 HEA in Hank’s solution is comparable to that of Ti-6Al-4V.展开更多
基金supported by the the National Natural Science Foundation of China(Grant Nos.12175015 for W.G.and 12174387 for L.Z.)the Chinese Academy of Sciences (Grant Nos.YSBR-057 and JZHKYPT-2021-08 for L.Z.)+1 种基金the Innovative Program for Quantum Science and Technology (Grant No.2021ZD0302600 for L.Z.)the start-up funding of Westlake University and the China Postdoctoral Science Foundation (Grant No.2024M752898 for Z.W.and Z.Y.)。
文摘Entanglement plays a key role in quantum physics, but how much information it can extract from many-body systems is still an open question, particularly regarding quantum criticalities and emergent symmetries. In this work, we systematically study the entanglement entropy(EE) and derivative entanglement entropy(DEE) near quantum phase transitions in various quantum many-body systems. A one-parameter scaling relation between the DEE and system size at the critical point has been derived for the first time, which successfully obtains the critical exponent via data collapse. Furthermore, we find that the EE peaks at the(emergent) symmetryenhanced first-order transition, reflecting higher symmetry breaking. This work provides a new paradigm for quantum many-body research from the perspective of EE and DEE.
基金supported by the Fujian Provincial Science and Technology Planning Project(No.2022HZ027006,No.2024HZ021023)National Natural Science Foundation of China(No.U22A20118).
文摘High-entropy materials(HEMs)have attracted considerable research attention in battery applications due to exceptional properties such as remarkable structural stability,enhanced ionic conductivity,superior mechanical strength,and outstanding catalytic activity.These distinctive characteristics render HEMs highly suitable for various battery components,such as electrodes,electrolytes,and catalysts.This review systematically examines recent advances in the application of HEMs for energy storage,beginning with fundamental concepts,historical development,and key definitions.Three principal categories of HEMs,namely high-entropy alloys,high-entropy oxides,and highentropy MXenes,are analyzed with a focus on electrochemical performance metrics such as specific capacity,energy density,cycling stability,and rate capability.The underlying mechanisms by which these materials enhance battery performance are elucidated in the discussion.Furthermore,the pivotal role of machine learning in accelerating the discovery and optimization of novel high-entropy battery materials is highlighted.The review concludes by outlining future research directions and potential breakthroughs in HEM-based battery technologies.
基金supported by the NSFC(12171378)supported by the Characteristic innovation projects of universities in Guangdong province(2023K-TSCX381)+3 种基金supported by the Young Top-Talent program of Chongqing(CQYC2021059145)the Major Special Project of NSFC(12141101)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJZD-K202200509)the Natural Science Foundation Project of Chongqing(CSTB2024NSCQ-MSX0937).
文摘An upper estimate of the new curvature entropy is provided,via the integral inequality of a concave function.For two origin-symmetric convex bodies in R^(n),this bound is sharper than the log-Minkowski inequality of curvature entropy.As its application,a novel proof of the log-Minkowski inequality of curvature entropy in the plane is given.
基金supported by the Industrial Foresight Projects and Common Key Technologies of Zhenjiang(No.GY2024028)The authors also acknowledged the support of the Marine Equipment and Technology Institute,Jiangsu University of Science and Technology(No.XTCX202404).
文摘Solid oxide cells(SOCs),which include solid oxide fuel cells(SOFCs),symmetrical solid oxide cells(S-SOCs),and reversible solid oxide cells(R-SOCs),are considered key technologies for driving low-carbon and green revolution in the energy sector.Because of their clean,low-cost,and high-efficiency characteristics,SOCs have great potential for energy conversion and storage.However,the further development of SOC technologies faces challenges,such as a lack of long-term operational stability of the cell system,high material cost under high-temperature operating conditions,and limited catalytic effects at low temperatures.Recently,high-entropy materials(HEMs)have demonstrated excellent performance and wide application prospects in catalytic reactions,energy storage,supercapacitors,and other fields owing to their unique atomic arrangement and the four core effects(high mixed entropy stabilization effect,sluggish dif-fusion effect,lattice distortion effect,and“cocktail”effect).HEMs provide a new perspective for solving the aforementioned problems in the field of SOCs.This comprehensive review summarizes the applications of HEMs in the three fundamental components of SOCs:elec-trodes,electrolytes,and interconnects,focusing on the role of HEMs in enhancing catalytic activity and conductivity while mitigating harmful gas poisoning.In addition,this review proposes possible development directions for HEMs in SOCs based on the current re-search progress,providing valuable reference for high-entropy designs aimed at further enhancing the performance of SOCs.
基金financially supported by the National Natural Science Foundation of China(Nos.52472032 and 52172023)the Key Program of Natural Science Foundation of Hubei Province(No.2024AFA083)
文摘High-temperature industries,as the primary consumers of energy,are greatly concerned with energy savings.Designing refractory linings with low thermal conductivity to reduce heat dissipation through high-temperature furnace linings is a critical concern.In this study,a series of novel entropy-stabilized spinel materials are reported,and their potential applications in high-temperature industries are investigated.XRD and TEM results indicate that all materials possess a cubic spinel crystal structure with the■space group.Furthermore,these materials exhibit good phase stability at high temperatures.All entropy-stabilized spinel aggregates demonstrated high refractoriness(>1800℃)and a high load softening temperature(>1700℃).The impact of configurational entropy on the properties of entropy-stabilized spinel materials was also studied.As configurational entropy increased,the thermal conductivity of the entropy-stabilized spinel decreased,while slag corrosion resistance deteriorated.For the entropy-stabilized spinel with a configurational entropy value of 1.126R,it showed good high-temperature stability,reliable resistance to slag attack,and a low thermal conductivity of 2.776 W·m^(-1)·K^(-1)at 1000℃.
基金Supported by NSFC(No.11861010),also supported by NSFC(No.12171175),also supported by NSFC(No.12261006)NSF of Guangxi Province(No.2018GXNSFFA281008)Project of Guangxi First Class Disciplines of Statistics(No.GJKY-2022-01)。
文摘In this paper,we study the Bowen entropy of stable sets in positive entropy G-system of amenable group actions.The lower bound of the Bowen entropy of these sets are estimated.
文摘Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy.
文摘The role of entropy and enthalpy plays an essential key for the formation of an alloy. This paper illustrates how an alloy is to form and what and why the properties of the alloy are going to have by the entropy and enthalpy effects via a designed enthalpy-entropy plane (EE-plane) based on the Gibbs free energy equation and the introducing a charactering pseudo-unitary lattice (PUL) for entropy alloys. Based on the PUL scheme, the so-called four effects in high entropy alloys are simply nothing but the entropy effect with the other three accompanying effects: the distortion, slow diffusion and cocktail effects.
基金financially supported by the Central Guidance on Local Science and Technology Development Fund of Sichuan Province(No.2023ZYDF044)LingYan Project(No.2024C01090)
文摘The inferior structure/electrochemistry stability due to the volume expansion and the less lithium storage active sites of transition metal oxide (TMO) are critical issue hindering their commercialization.The rational design to utilize the combined advantages of both structure and composition is a key strategy to address these challenges.Here,the (FeCoNiMnCrMg)_(2)O_(3)high entropy oxide(HEO) with different morphologic structures are developed through integrating molecule and microstructure engineering.The morphologic structure of high entropy oxide transforms from solid spheres to multishelled core-shell spheres,and then to hollow spheres,which is governed by a thermally induced non-uniform shrinkage process coupled with Kirkendall effect diffusion due to the different calcination temperature.Even with the incorporation of various metallic ions,the high entropy oxide with a homogeneous single-phase solid solution maintained their shape and uniformity in size due to the ability of metal ions to coexist on the same lattice point.Benefiting from the meticulous control of both compositional and geometric factors,the hollow high entropy oxide exhibited a significantly high specific capacity (1722.1 mAh g^(-1)after 200cycles at 1 A g^(-1)) and long-life span for lithium storage(2158.7 mAh g^(-1)over 900 cycles at 4 A g^(-1)).The collaborative lattice and consistent volume demonstrated in this study offer significant potential in directing the development of materials for advanced energy storage solutions.
文摘We study the conditional entropy of topological dynamical systems using a family of metrics induced by probability bi-sequences.We present a Brin-Katok formula by replacing the mean metric by a family of metrics induced by a probability bi-sequence.We also establish the Katok’s entropy formula for conditional entropy for ergodic measures in the case of the new family of metrics.
基金sponsored by the National Natural Science Foundation of China(NSFC)(U21A2064,52202064)the Scientific Research Team Plan of Zhengzhou University of Aeronautics(23ZHTD01002)+2 种基金the International Science and Technology Cooperation Project of Henan Province(241111520800)the Science Foundation for The Excellent Youth Scholars of Henan Province(212300410089),the Henan Key Laboratory of Aeronautical Material and Technology Open Foundation(ZHKF-230101)the ZUA Innovation Fund for Graduate Education(2024CX106,2024CX124).
文摘High-entropy carbides are increasingly favored as electromagnetic wave-absorbing materials because of their customizable structures and distinctive high-entropy effects.Nonetheless,the influence of entropy changes on the absorptive characteristics of high-entropy carbide ceramics remains underexplored.In this work,the impact of increased entropy on the absorption characteristics of stable high-entropy transition metal carbides has been systematically studied.This work prepared three carbides ceramics with different entropy values:(Mo_(1/3)Nb_(1/3)Ta_(1/3))C,(Ti_(1/4)Mo_(1/4)Nb_(1/4)Ta_(1/4))C,and(Zr_(1/5)Ti_(1/5)Mo_(1/5)Nb_(1/5)Ta_(1/5))C.The impact of entropy variation in high-entropy carbide nanowires on their wave-absorbing properties was studied.The results showed excellent electromagnetic wave absorption,achieving a minimum reflection loss of−50.08 dB at 1.8 mm,and demonstrating an effective absorption bandwidth of 4.675 GHz at 1.7 mm.In addition,through detailed structure,morphology,and chemical state characterization,as well as wave absorption capability testing,research indicates that high-entropy carbides can effectively regulate defects by adjusting the size of entropy,leading to lattice distortion,discontinuous lattice fringes,and vacancies.The presence of these defects enhances the polarization loss and balances the excessively high dielectric constant of high-entropy carbide ceramics.Additionally,the design of one-dimensional structures facilitates carrier migration,thereby increasing conductive loss.Collectively,these factors enhance the ability of the samples to attenuate electromagnetic waves.This study lays a theoretical foundation and provides experimental guidance for developing new high-performance materials for electromagnetic wave absorption.
文摘This study investigated the physicochemical properties,enzyme activities,volatile flavor components,microbial communities,and sensory evaluation of high-temperature Daqu(HTD)during the maturation process,and a standard system was established for comprehensive quality evaluation of HTD.There were obvious changes in the physicochemical properties,enzyme activities,and volatile flavor components at different storage periods,which affected the sensory evaluation of HTD to a certain extent.The results of high-throughput sequencing revealed significant microbial diversity,and showed that the bacterial community changed significantly more than did the fungal community.During the storage process,the dominant bacterial genera were Kroppenstedtia and Thermoascus.The correlation between dominant microorganisms and quality indicators highlighted their role in HTD quality.Lactococcus,Candida,Pichia,Paecilomyces,and protease activity played a crucial role in the formation of isovaleraldehyde.Acidic protease activity had the greatest impact on the microbial community.Moisture promoted isobutyric acid generation.Furthermore,the comprehensive quality evaluation standard system was established by the entropy weight method combined with multi-factor fuzzy mathematics.Consequently,this study provides innovative insights for comprehensive quality evaluation of HTD during storage and establishes a groundwork for scientific and rational storage of HTD and quality control of sauce-flavor Baijiu.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFF0609000)National Natural Science Foundation of China(Grant Nos.52171034 and 52101037)Postdoctoral Fellowship Program of CPSFara(No.GZB20230944).
文摘Up-and-coming high-temperature materials,refractory high entropy alloys,are suffering from lower oxidation resistance,restricting their applications in the aerospace field.In this study,two novel treatments of Al-deposited and remelted were developed to refine the microstructure and enhance the oxidation resistance of refractory high entropy alloy using electron beam freeform fabrication(EBF3).Finer and short-range ordering structures were observed in the remelted sample,whereas the Al-deposited sample showcased the formation of silicide and intermetallic phases.High-temperature cyclic and isothermal oxidation tests at 1000℃ were carried out.The total weight gain after 60 h of cyclic oxidation decreased by 17.49%and 30.46%for the remelted and deposited samples,respectively,compared to the as-cast state.Oxidation kinetics reveal an evident lower mass gain and oxidation rate in the treated samples.A multilayer oxide consisting of TiO_(2)+Al_(2)O_(3)+SiO_(2)+AlNbO_(4) was studied for its excellent oxidation resistance.The oxidation behavior of rutile,corundum and other oxides was analyzed using first principles calculations and chemical defect analysis.Overall,this research,which introduces novel treatments,offers promising insights for enhancing the inherent oxidation resistance of refractory high entropy alloys.
基金funding from the National Natural Science Foundation of China(Nos.52063017 and 52061025)the Major Science and Technology Project of Gansu Province(Nos.22ZD6GA008 and 20ZD7GJ008)+3 种基金the Natural Science Foundation of Gansu Province(No.23JRRA820)The Science and Technology Project of Major Science and Technology Project of Gansu Province(No.22ZD6GA008)the Science and Technology Project of Gansu Province(No.23YFGA0058)the College Industry Support Plan of Gansu Province(No.2023CYZC-27).
文摘The growing demand for material properties in challenging environments has led to a surge of interest in rapid composition design. Given the great potential composition space, the field of high/medium entropy alloys (H/MEAs) still lacks effective atomic-scale composition design and screening schemes, which hinders the accurate prediction of desired composition and properties. This study proposes a novel approach for rapidly designing the composition of materials with the aim of overcoming the trade-off between strength and ductility in metal matrix composites. The effect of chemical composition on stacking fault energy (SFE), shear modulus, and phase stability was investigated through the use of molecular dynamics (MD) and thermodynamic calculation software. The alloy's low SFE, highest shear modulus, and stable face-centered cubic (FCC) phase have been identified as three standard physical quantities for rapid screening to characterize the deformation mechanism, ultimate tensile strength, phase stability, and ductility of the alloy. The calculation results indicate that the optimal composition space is expected to fall within the ranges of 17 %–34 % Ni, 33 %–50 % Co, and 25 %–33 % Mn. The comparison of stress-strain curves for various predicted components using simulated and experimental results serves to reinforce the efficacy of the method. This indicates that the screening criteria offer a necessary design concept, deviating from traditional strategies and providing crucial guidance for the rapid development and application of MEAs.
基金supported by the National Natural Science Foundation of China(Nos.52171166 and U20A20231)the Natural Science Foundation of Hunan Province,China(Nos.2024JJ2060 and 2024JJ5406)+1 种基金the Key Laboratory of Materials in Dynamic Extremes of Sichuan Province(No.2023SCKT1102)the Postgraduate Scientific Research Innovation Project of National University of Defense Technology(No.XJJC2024065).
文摘Introducing B2 ordering can effectively improve the mechanical properties of lightweight refractory high-entropy alloys(LRHEAs).However,(Zr,Al)-enriched B2 precipitates generally reduce the ductility because their ordering characteristic is destroyed after dislocation shearing.Meanwhile,the local chemical order(LCO)cannot provide an adequate strengthening effect due to its small size.
基金supported by the National Key R&D Program of China(No.2024YFB4007501)the Natural Science Foundation of Jiangsu Province(No.BK20240109)the project of Jiangsu Key Laboratory for Clean Utilization of Carbon Resources(No.BM2024007).
文摘Low-concentration coal mine methane(LC-CMM),which is predominantly composed of methane,serves as a clean and low-carbon energy resource with significant potential for utilization.Utilizing LC-CMM as fuel for solid oxide fuel cells(SOFCs)represents an efficient and promising strategy for its effective utilization.However,direct application in Ni-based anodes induces carbon deposition,which severely degrades cell performance.Herein,a medium-entropy oxide Sr_(2)FeNi_(0.1)Cr_(0.3)Mn_(0.3)Mo_(0.3)O_(6−δ)(SFNCMM)was developed as an anode internal reforming catalyst.Following reduction treatment,FeNi_(3) nano-alloy particles precipitate on the surface of the material,thereby significantly enhancing its catalytic activity for LC-CMM reforming process.The catalyst achieved a methane conversion rate of 53.3%,demonstrating excellent catalytic performance.Electrochemical evaluations revealed that SFNCMM-Gd_(0.1)Ce_(0.9)O_(2−δ)(GDC)with a weight ratio of 7:3 exhibited superior electrochemical performance when employed as the anodic catalytic layer.With H_(2) and LC-CMM as fuels,the single cell achieved maximum power densities of 1467.32 and 1116.97 mW·cm^(−2) at 800℃,respectively,with corresponding polarization impedances of 0.17 and 1.35Ω·cm^(2).Furthermore,the single cell maintained stable operation for over 100 h under LC-CMM fueling without significant carbon deposition,confirming its robust resistance to carbon formation.These results underscore the potential of medium-entropy oxides as highly effective catalytic layers for mitigating carbon deposition in SOFCs.
基金financially supported by the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province,China(No.2023JH2/101600002)+3 种基金the Liaoning Provincial Natural Science Foundation,China(No.2022-YQ-09)the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program,China(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group,China(No.KJBLM202202)the Fundamental Research Funds for the Central Universities,China(Nos.N2201023 and N2325009)。
文摘In recent years,medium entropy alloys have become a research hotspot due to their excellent physical and chemical performances.By controlling reasonable elemental composition and processing parameters,the medium entropy alloys can exhibit similar properties to high entropy alloys and have lower costs.In this paper,a FeCoNi medium entropy alloy precursor was prepared via sol-gel and coprecipitation methods,respectively,and FeCoNi medium entropy alloys were prepared by carbothermal and hydrogen reduction.The phases and magnetic properties of FeCoNi medium entropy alloy were investigated.Results showed that FeCoNi medium entropy alloy was produced by carbothermal and hydrogen reduction at 1500℃.Some carbon was detected in the FeCoNi medium entropy alloy prepared by carbothermal reduction.The alloy prepared by hydrogen reduction was uniform and showed a relatively high purity.Moreover,the hydrogen reduction product exhibited better saturation magnetization and lower coercivity.
基金supported by the National Natural Science Foundation of China(Nos.52130204,52174376,52202070,51822405)Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120028)+6 种基金TQ Innovation Foundation(No.23-TQ09-02-ZT-01-005)Aeronautical Science Foundation of China(No.20220042053001)Science and Technology Innovation Team Plan of Shaanxi Province(No.2021TD-17)Key R&D Project of Shaanxi Province(No.2024GX-YBXM-220)Thousands Person Plan of Jiangxi Province(JXSQ2020102131)Fundamental Research Funds for the Central Universities(Nos.D5000230348,D5000220057)China Scholarship Council(Nos.202206290133,202306290190).
文摘As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.
文摘The effect of oxygen on the microstructure,mechanical properties and deformation behaviours of as-cast biocompatible Ti40Zr25Nb25Ta10Ox(x=0.5,1.0 and 2.0 at.%)high entropy alloys(HEAs)was investi-gated.All three oxygen-doped HEAs solidified as a single body-centred cubic(BCC)phase grain structure with predominantly high-angle grain boundaries following the Mackenzie prediction.Increasing oxygen content significantly increased tensile strength at a rate of about 180 MPa/1.0 at.%,but decreased ten-sile ductility.However,at the addition level of 0.5 at.%O,the as-cast Ti40Zr25Nb25Ta10O0.5 HEA can achieve a yield strength(σ_(0.2))of 947±44 MPa and an elongation at break(ε_(f))of 9.5%±1.8%.These properties make this HEA comparable to medical grade Ti-6Al-4V(wt.%)alloy(ASTM Grade 23 titanium)(σ_(0.2)≥759 MPa;ε_(f)≥10%)in itsability to absorbenergy in plasticdeformation,whileoffering greater resistance to permanent shape changes.Due to the possible strong interaction between oxygen atoms and dislocations through pinning and de-pinning,all oxygen-doped HEAs exhibited discontinuous yield-ing,whereas the low oxygen base HEA underwent normal yielding.No oxygen clusters were detected through atom probe tomography(APT)analysis.The deformation mechanism depends on oxygen con-tent.The plastic deformation of the Ti40Zr25Nb25Ta10O0.5 HEA occurred through the formation of pri-mary and secondary shear bands.In contrast,planar slip bands and a limited number of primary shear bands(without secondary shear bands)were observed in the Ti40Zr25Nb25Ta10O2.0 HEA.To ensure suf-ficient ductility,the oxygen content should be limited to 0.5 at.%.Furthermore,at this oxygen content,the corrosion resistance of the Ti40Zr25Nb25Ta10O0.5 HEA in Hank’s solution is comparable to that of Ti-6Al-4V.