Highlights●Salinity commonly hindered wheat germination,and using herb-derived carbon dots was an emerging approach to enhancing plant salt tolerance in agricultural production.●Wolfberry-driven carbon dots(Wo-CDs)w...Highlights●Salinity commonly hindered wheat germination,and using herb-derived carbon dots was an emerging approach to enhancing plant salt tolerance in agricultural production.●Wolfberry-driven carbon dots(Wo-CDs)were synthesized and applied as a nano-primer to enhance wheat salt tolerance by maintaining reactive oxygen species levels through early oxidative stress conditioning.展开更多
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability...As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.展开更多
Pancreatic ductal adenocarcinoma(PDAC)is one of the most aggressive and fatal malignancies,with a 5-year survival rate of<15%.Despite significant advancements in targeted therapies and immunotherapy,these approache...Pancreatic ductal adenocarcinoma(PDAC)is one of the most aggressive and fatal malignancies,with a 5-year survival rate of<15%.Despite significant advancements in targeted therapies and immunotherapy,these approaches benefit only a limited subset of patients,leaving chemotherapy as the primary treatment modality for most patients.Chemotherapy is an essential adjunct to surgical resection,the only potentially curative option,playing a crucial role in reducing the tumor burden,delaying disease progression,and alleviating symptoms.However,its long-term efficacy is frequently undermined by the development of chemoresistance,wherein tumor cells adopt diverse strategies to evade or repair chemotherapy-induced damage.Addressing this critical barrier is imperative for improving the clinical outcomes of PDAC.This review comprehensively examines the multifaceted mechanisms of chemoresistance in PDAC and highlights innovative strategies designed to enhance chemosensitivity,thereby offering new hope for overcoming these challenges and improving patient survival.展开更多
This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the...This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the photographs by reducing truncations in the existing images.Furthermore,the collected images undergo processing using histogram gradients and a flexible threshold value that may be adjusted in specific situations.Thus,it is possible to reduce the occurrence of overlapping circumstances in collective picture characteristics by substituting grey-scale photos with colorized factors.The proposed method offers additional robust feature representations by imposing a limiting factor to reduce overall scattering values.This is achieved by visualizing a graphical function.Moreover,to derive valuable insights from a series of photos,both the separation and in-version processes are conducted.This involves analyzing comparison results across four different scenarios.The results of the comparative analysis show that the proposed method effectively reduces the difficulties associated with time and space to 1 s and 3%,respectively.In contrast,the existing strategy exhibits higher complexities of 3 s and 9.1%,respectively.展开更多
This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The...This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.展开更多
Traditional Chinese medicine(TCM)offers diverse therapeutic compounds but faces challenges like poor bioavailability and instability.Recent innovations in drug delivery systems,including nanotechnology-based drug deli...Traditional Chinese medicine(TCM)offers diverse therapeutic compounds but faces challenges like poor bioavailability and instability.Recent innovations in drug delivery systems,including nanotechnology-based drug delivery systems have shown potential to enhance solubility,stability,and therapeutic efficacy.This review examines these advancements,focusing on their mechanisms and applications in improving TCM formulations.Cutting-edge techniques,such as microneedles,iontophoretic patches,and self-orienting applicators,are also discussed for their potential to revolutionize TCM delivery.By bridging traditional wisdom with modern innovations,this review emphasizes the transformative role of these strategies in advancing TCM's integration into contemporary medicine.展开更多
In-situ conversion of subsurface hydrocarbons via electromagnetic(EM)heating has emerged as a promising technology for producing carbon-zero and affordable hydrogen(H_(2))directly from natural gas reservoirs.However,t...In-situ conversion of subsurface hydrocarbons via electromagnetic(EM)heating has emerged as a promising technology for producing carbon-zero and affordable hydrogen(H_(2))directly from natural gas reservoirs.However,the reaction pathways and role of water as an additional hydrogen donor in EM-assisted methane-to-hydrogen(CH_(4)-to-H_(2))conversion are poorly understood.Herein,we employ a combination of lab-scale EM-heating experiments and reaction modeling analyses to unravel reaction pathways and elucidate water's role in enhancing hydrogen production.The labelled hydrogen isotope of deuterium oxide(D_(2)O)is used to trace the sources of hydrogen.The results show that water significantly boosts hydrogen yield via coke gasification at around 400℃and steam methane reforming(SMR)reaction at over 600℃in the presence of sandstone.Water-gas shift reaction exhibits a minor impact on this enhancement.Reaction mechanism analyses reveal that the involvement of water can initiate auto-catalytic loop reactions with methane,which not only generates extra hydrogen but also produces OH radicals that enhance the reactants'reactivity.This work provides crucial insights into the reaction mechanisms involved in water-carbon-methane interactions and underscores water's potential as a hydrogen donor for in-situ hydrogen production from natural gas reservoirs.It also addresses the challenges related to carbon deposition and in-situ catalyst regeneration during EM heating,thus derisking this technology and laying a foundation for future pilots.展开更多
To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theor...To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theoretical methods,was used.Local loading experiments were conducted to validate the accuracy of the finite element model.Furthermore,a control equation was formulated to correlate structural parameters with response modes,and a matching coefficientλ(representing the ratio of core thickness to face sheet thickness)was introduced to establish a link between these parameters and impact characteristics.A demand-driven reverse design methodology for structural parameters was developed,with numerical simulations employed to assess its effectiveness.The results indicate that the proposed theory can accurately predict response modes and key indicators.An increase in theλbolsters the structural indentation resistance while concurrently heightens the likelihood of penetration.Conversely,a decrease in theλimproves the resistance to penetration,albeit potentially leading to significant deformations in the rear face sheet.Numerical simulations demonstrate that the reverse design methodology significantly enhances the structural penetration resistance.Comparative analyses indicate that appropriate matching reduces indentation depth by 27.4% and indentation radius by 41.8%of the proposed structure.展开更多
Global mortality rates are greatly impacted by malignancies of the brain and nervous system.Although,Magnetic Resonance Imaging(MRI)plays a pivotal role in detecting brain tumors;however,manual assessment is time-cons...Global mortality rates are greatly impacted by malignancies of the brain and nervous system.Although,Magnetic Resonance Imaging(MRI)plays a pivotal role in detecting brain tumors;however,manual assessment is time-consuming and susceptible to human error.To address this,we introduce ICA2-SVM,an advanced computational framework integrating Independent Component Analysis Architecture-2(ICA2)and Support Vector Machine(SVM)for automated tumor segmentation and classification.ICA2 is utilized for image preprocessing and optimization,enhancing MRI consistency and contrast.The Fast-MarchingMethod(FMM)is employed to delineate tumor regions,followed by SVM for precise classification.Validation on the Contrast-Enhanced Magnetic Resonance Imaging(CEMRI)dataset demonstrates the superior performance of ICA2-SVM,achieving a Dice Similarity Coefficient(DSC)of 0.974,accuracy of 0.992,specificity of 0.99,and sensitivity of 0.99.Additionally,themodel surpasses existing approaches in computational efficiency,completing analysis within 0.41 s.By integrating state-of-the-art computational techniques,ICA2-SVM advances biomedical imaging,offering a highly accurate and efficient solution for brain tumor detection.Future research aims to incorporate multi-physics modeling and diverse classifiers to further enhance the adaptability and applicability of brain tumor diagnostic systems.展开更多
In this article,we evaluate the findings of the study by Qian et al,which explores the efficacy of combining hyperthermia with opioid therapy for enhanced cancer pain management in patients with middle and late-stage ...In this article,we evaluate the findings of the study by Qian et al,which explores the efficacy of combining hyperthermia with opioid therapy for enhanced cancer pain management in patients with middle and late-stage gastrointestinal tumors.The study undertakes a retrospective analysis comparing traditional opioid therapy to an integrated approach of hyperthermia and opioids across 70 patients,highlighting significant benefits in pain control,reduction of opioid dosage,and minimization of adverse reactions.In our article,we not only discuss these fin-dings but also emphasize the broader implications for clinical practice,parti-cularly in enhancing patient outcomes through innovative pain management strategies.We advocate for further research to establish more robust data su-pporting this approach and to explore the mechanistic insights that enable these benefits.This discussion reflects on the potential paradigm shift in managing debilitating cancer-related pain,urging a reevaluation of current practices to incorporate these findings effectively.展开更多
The integration of visual elements,such as emojis,into educational content represents a promising approach to enhancing student engagement and comprehension.However,existing efforts in emoji integration often lack sys...The integration of visual elements,such as emojis,into educational content represents a promising approach to enhancing student engagement and comprehension.However,existing efforts in emoji integration often lack systematic frameworks capable of addressing the contextual and pedagogical nuances required for effective implementation.This paper introduces a novel framework that combines Data-Driven Error-Correcting Output Codes(DECOC),Long Short-Term Memory(LSTM)networks,and Multi-Layer Deep Neural Networks(ML-DNN)to identify optimal emoji placements within computer science course materials.The originality of the proposed system lies in its ability to leverage sentiment analysis techniques and contextual embeddings to align emoji recommendations with both the emotional tone and learning objectives of course content.A meticulously annotated dataset,comprising diverse topics in computer science,was developed to train and validate the model,ensuring its applicability across a wide range of educational contexts.Comprehensive validation demonstrated the system’s superior performance,achieving an accuracy of 92.4%,precision of 90.7%,recall of 89.3%,and an F1-score of 90.0%.Comparative analysis with baselinemodels and relatedworks confirms themodel’s ability tooutperformexisting approaches inbalancing accuracy,relevance,and contextual appropriateness.Beyond its technical advancements,this framework offers practical benefits for educators by providing an Artificial Intelligence-assisted(AI-assisted)tool that facilitates personalized content adaptation based on student sentiment and engagement patterns.By automating the identification of appropriate emoji placements,teachers can enhance digital course materials with minimal effort,improving the clarity of complex concepts and fostering an emotionally supportive learning environment.This paper contributes to the emerging field of AI-enhanced education by addressing critical gaps in personalized content delivery and pedagogical support.Its findings highlight the transformative potential of integrating AI-driven emoji placement systems into educational materials,offering an innovative tool for fostering student engagement and enhancing learning outcomes.The proposed framework establishes a foundation for future advancements in the visual augmentation of educational resources,emphasizing scalability and adaptability for broader applications in e-learning.展开更多
This paper introduces a novel approach combining radial borehole fracturing with Water-Alternating-Gas(WAG)injection,enabling simultaneous WAG injection and shale oil production in a single vertical well.A numerical r...This paper introduces a novel approach combining radial borehole fracturing with Water-Alternating-Gas(WAG)injection,enabling simultaneous WAG injection and shale oil production in a single vertical well.A numerical reservoir model incorporating the modified exponential non-Darcy law,stress sensitivity,and diffusion is established.The spatial distribution of permeability reduction shows that stress sensitivity enhances the non-Darcy effect,with apparent permeability decreasing to 0-92.1%of the initial value,highlighting the importance of maintaining reservoir pressure.Continuous CO_(2) flooding leads to early gas breakthrough,while continuous water flooding has less displacement efficiency.A 30%water-to-gas injection time ratio improves oil production and delays gas breakthrough compared to continuous CO_(2) injection.Optimal conditions for effective recovery are identified as an initial production period of 100 d and a well vertical spacing of 30 m.This study compares the production capacity of WAG operations under radial borehole fracturing and horizontal well fracturing.When the number of wells is two for both cases,the production capacity of radial borehole fracturing is comparable to that of five-stage horizontal well fracturing,indicating that radial borehole fracturing can serve as an alternative or supplement to horizontal well fracturing when the reservoir volume is limited.This study offers a new method and theoretical basis for the efficient development of shale oil.展开更多
High-water-cut mature reservoirs typically serve as the“ballast”for ensuring China’s annual crude oil production of 200 million tons.Despite the use of water flooding and chemical methods,over 40%of crude oil remai...High-water-cut mature reservoirs typically serve as the“ballast”for ensuring China’s annual crude oil production of 200 million tons.Despite the use of water flooding and chemical methods,over 40%of crude oil remains unexploited.It is critical to develop efficient revolutionary technologies to further enhance oil recovery(EOR)by a large percentage in high-water-cut mature reservoirs.To address this issue,the potential of vertical remaining oil in Daqing Oilfield is first analyzed from massive monitoring data.Using molecular dynamics simulation to design optimal synthetic routine,a copolymer without flu-orine or silicon is synthesized by modifying vinyl acetate(VAc)with maleic anhydride(MA)and styrene(St),and treated as a supercritical CO_(2)(scCO_(2))thickener.The underlying EOR mechanism of the scCO_(2) thickener is thereafter clarified by high-temperature,high-pressure oil displacement experiments.The EOR effect by thickened scCO_(2) flooding in a typical high-water-cut mature reservoir is predicted,and future technological advancements of the technique are ultimately discussed.Results show that the ver-tical remaining oil enriched in weakly swept zones is a primary target for further EOR in high-water-cut mature reservoirs.The copolymer typically exhibits good solubility,strong dispersion stability,and high thickening effect in scCO_(2).Under an ambient pressure of 10 MPa and a temperature of 50℃,the disso-lution of copolymer at a mass concentration of 0.2%can effectively increase the viscosity of scCO_(2) by 39.4 times.Due to the synergistic effect between expanding vertical swept volume and inhibiting gas channel-ing,crude oil recovery can be further enhanced by 23.1%for a typical high-water-cut mature reservoir when the scCO_(2) viscosity is increased by 50 times.Our understandings demonstrate that the thickened scCO_(2) flooding technology has significant technical advantages in high-water-cut mature reservoirs,with challenges and future development directions in field-scale applications also highlighted.展开更多
The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high in...The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries.展开更多
The tropical roots and tuber crops (R and T) consist of cassava, sweet potato, yams, elephant foot yam, taro, tannia and a couple of minor tuber crops. Tropical tuber crops are the third most important food crops afte...The tropical roots and tuber crops (R and T) consist of cassava, sweet potato, yams, elephant foot yam, taro, tannia and a couple of minor tuber crops. Tropical tuber crops are the third most important food crops after cereals and pulses. These crops play a crucial role in providing food and nutritional security to the rural masses in Africa, Latin America and parts of Asia. Cassava and sweet potato rank among the top 10 food crops produced in developing countries and contribute to about 6% of world’s dietary calories. In India, tropical tubers are grown mostly in states like Odisha, West Bengal, Andhra Pradesh, Kerala, Tamil Nadu, Bihar and North East covering 4.5% of the total area under vegetables with 5.7% of the total vegetable production. Low income farmers and most undernourished households in India depend on R and T crops. They value these crops for their high calorie and stable yields under conditions in which other crops may fail. Genetic diversity of major tropical tuber crops provides options for its diverse usage in “multicuisine”, “nutrition”, “feed”, health care” and renewable resources of processing firms. Water productivity is also higher, for example, to produce 1 kg of tubers, sweet potatoes require water (383 l), taro (606 l), yam (343 l), as compared to rice (1673 l), maize (1222 l), wheat (1827 l), etc. Tuber crops are one of most efficient producers of dry matter and edible energy. These crops have potential to reverse soil degradation. Cassava is already recognized as drought tolerant followed by yam. Tubers of taro, elephant foot yam and yams can be stored under zero energy conditions for 6 - 7 months unlike temperate potatoes in cold storage. The natural climatic resilience as well as inherent nutrition attributes, has been explored further. Such studies made these crops more robust to changing climate and as the source of nutrient enriched food bowls. Sweet potato variety Bhu Krishna is the first purple flesh variety in India containing (90 mg/100 g anthocyanin) coupled with starch 22% - 25%. Similarly, the orange flesh Bhu Sona containing beta carotene (14 mg/100 g) coupled with high starch 22% - 24% is the first variety having both high beta carotene and high starch. These varieties are tolerant to salinity and Bhu Krishna is resistant to weevil. Likewise, developed improved taro varieties resistant to biotic blight stress, tolerant to salinity and are enriched with micro nutrients. These improved varieties are used to breed the superior types further. All these climate resilient, nutritionally enriched varieties will have a greater impact on supplementing rainbow food for all. These can address the issues like “food insecurity”, “malnutrition”, diet related issue of mass consumers across the world. The analysis of innovations on enhancing adaptability, nutritional quality with a management matrix would help in strengthening future programme.展开更多
Online tracking mechanisms employed by internet companies for user profiling and targeted advertising raise major privacy concerns. Despite efforts to defend against these mechanisms, they continue to evolve, renderin...Online tracking mechanisms employed by internet companies for user profiling and targeted advertising raise major privacy concerns. Despite efforts to defend against these mechanisms, they continue to evolve, rendering many existing defences ineffective. This study performs a large-scale measurement of online tracking mechanisms across a large pool of websites using the OpenWPM (Open Web Privacy Measurement) platform. It systematically evaluates the effectiveness of several ad blockers and underlying Privacy Enhancing Technologies (PET) that are primarily used to mitigate different tracking techniques. By quantifying the strengths and limitations of these tools against modern tracking methods, the findings highlight gaps in existing privacy protections. Actionable recommendations are provided to enhance user privacy defences, guide tool developers and inform policymakers on addressing invasive online tracking practices.展开更多
The Decision of the Central Committee of the Communist Party of China and the State Council on Winning the Battle of Poverty Alleviation points out that by 2020,rural poor people will have stable access to food and cl...The Decision of the Central Committee of the Communist Party of China and the State Council on Winning the Battle of Poverty Alleviation points out that by 2020,rural poor people will have stable access to food and clothing,and compulsory education,basic medical care,and housing security will be guaranteed.The growth rate of per capita disposable income of farmers in poverty-stricken areas is higher than the national average,and the main indicators of basic public services are close to the national average.According to the requirements,the poverty alleviation work team stationed in the village has tailored measures to local conditions and carried out targeted poverty alleviation.Faced with difficulties such as increasing the importance of education among villagers,solving the problem of children going to school,and increasing income for villagers,under the guidance of the assistance unit,the poverty alleviation work team adopts the method of setting an example to ensure education,introducing education to increase knowledge,and expanding knowledge through education going global,in order to change the current situation from point to surface.After unremitting efforts,the villagers began to change their mindset,and the enrollment and enrollment rates of village students were significantly increased.The children enter the classroom,the elderly work at home,and the young and strong labor force actively goes out to work.The villagers have motivation to work,and life has a bright future.The village sees hope.展开更多
The advancement of society and continuous improvements in the healthcare system have heightened the demands on professional nursing training,necessitating that nursing education better meet practical needs in an incre...The advancement of society and continuous improvements in the healthcare system have heightened the demands on professional nursing training,necessitating that nursing education better meet practical needs in an increasingly diversified medical environment.To address these requirements,the teaching approaches and assessment methods in nursing education should be reformed and updated.This study conducted a comprehensive analysis of the current state of nursing education and proposed potential pathways to enhance nursing education in medical schools.These pathways include implementing a student-centered teaching approach,incorporating various teaching activities,emphasizing the development of students’practical skills,and reforming assessment methods to cultivate well-rounded professionals.The application of these strategies will help improve the effectiveness of classroom teaching,deepen students’understanding of theoretical knowledge and practical skills,and thereby contribute to the improvement of nursing education quality.展开更多
The theory of“Salt-processing enhancing drug into kidney meridian”was firstly put forward by Chen Jiamu,a medical doctor of Xin’an,in“Enlightening Primer of Materia Medica”.This theory integrates the theory of th...The theory of“Salt-processing enhancing drug into kidney meridian”was firstly put forward by Chen Jiamu,a medical doctor of Xin’an,in“Enlightening Primer of Materia Medica”.This theory integrates the theory of the five elements of Chinese medicine that the five flavors enter into the five viscera,and forms the theory of the role of the auxiliary materials of Chinese medicine concoctions.This theory is an important guiding significance for the clinical use of raw and cooked Chinese medicine tablets.At present,there are more studies on the theory of“Salt-processing enhancing drug into kidney meridian”in the literature,mainly focusing on the chemical composition,efficacy changes and the concoction mechanism of salt products of traditional Chinese medicines before and after salt preparation.There are relatively few review papers on the theory of“Salt-processing enhancing drug into kidney meridian”from the perspectives of auxiliary salt and attribution of meridians.In this paper,through reviewing relevant ancient books and literature,and on the basis of the previous review articles,this paper centers on the auxiliary salt,and conducts in-depth excavation and elaboration in terms of its sources,types,and the historical evolution of the salt production method.From the perspective of categorization,focusing on the core theory of“Kidney stores essence,governing reproduction,bone and generating marrow,water and brain”,we summarize the changes in efficacy before and after the salt preparation of kidney tonic traditional Chinese medicines,the changes in external and internal constituents as well as the scientific connotation of the concocting mechanism behind the effect-constituent changes.The scientific connotation of the concoction theory of“Salt-processing enhancing drug into kidney meridian”was initially elucidated,providing a new reference model for the study of the theory of Chinese medicine concoction attribution.展开更多
Coal chemical wastewater(CCW)is a type of refractory industrial wastewater,and its treatment has become the main bottleneck restricting the sustainable development of novel coal chemical industry.Biological treatment ...Coal chemical wastewater(CCW)is a type of refractory industrial wastewater,and its treatment has become the main bottleneck restricting the sustainable development of novel coal chemical industry.Biological treatment is considered as an economical,effective and environmentally friendly technology for CCW treatment.However,conventional biological process is difficult to achieve the efficient removal of refractory organics because of CCW with the characteristics of composition complexity and high toxicity.Therefore,seeking the novel enhancement strategy appears to be a favorable solution for enhancing biological treatment efficiency of CCW.This review focuses on presenting a comprehensive picture about the exogenous enhancement strategies for CCW biological treatment.The performance and potential application of exogenous enhancement strategies,including co-metabolic substrate enhancement,biofilm filler enhancement,adsorption material enhancement and conductive mediator enhancement,were expounded.Meanwhile,the enhancing mechanisms of different strategies were comprehensively discussed from a biological perspective.Furthermore,the prospects of enhancement strategies based on the engineering performance,economic cost and environmental impact(3E)evaluation were introduced.And novel enhancement strategy based on“low carbon emissions”,“resource recycling”and“water environment security”in the context of carbon neutrality was proposed.Taken together,this review provides technical reference and new direction to facilitate the regulation and optimization of typical industrial wastewater biological treatment.展开更多
基金funded by the President’s Fund of Tarim University,China(TDZKBS202408 and TDZKCX202414)the Shihezi University High-Level Talent Project,China(RCZK202339)+1 种基金the Key Technology R&D Fund for Key Fields in the Production and Construction Corps,China(2024AB007)the Research Program of the Chinese Academy of Sciences(GJ05040103)。
文摘Highlights●Salinity commonly hindered wheat germination,and using herb-derived carbon dots was an emerging approach to enhancing plant salt tolerance in agricultural production.●Wolfberry-driven carbon dots(Wo-CDs)were synthesized and applied as a nano-primer to enhance wheat salt tolerance by maintaining reactive oxygen species levels through early oxidative stress conditioning.
基金supported by the Exchange Program of Highend Foreign Experts of Ministry of Science and Technology of People’s Republic of China(No.G2023041003L)the Natural Science Foundation of Shaanxi Provincial Department of Education(No.23JK0367)+1 种基金the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology(Nos.SLGRCQD2208,SLGRCQD2306,SLGRCQD2133)Contaminated Soil Remediation and Resource Utilization Innovation Team at Shaanxi University of Technology。
文摘As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.
基金supported by grants from the CAMS Innovation Fund for Medical Sciences(No.2024-I2M-ZD-001)National Key R&D Program of China(No.2023YFC2413400)+5 种基金National Natural Science Foundation of China(No.82272917,No.62133006,No.82203158,No.82473086,No.82473096,and No.82403006)Beijing Natural Science Foundation(No.7242104,No.7244385,and No.L248053)Research and Translational Application of Clinical Characteristic Diagnosis and Treatment Techniques in the Capital(No.Z221100007422070)Beijing Science and Technology Plan(No.Z231100007223006)National High Level Hospital Clinical Research Funding(No.2022-PUMCH-B-004)the Postdoctoral Fellowship Program of CPSF(No.GZB20240074).
文摘Pancreatic ductal adenocarcinoma(PDAC)is one of the most aggressive and fatal malignancies,with a 5-year survival rate of<15%.Despite significant advancements in targeted therapies and immunotherapy,these approaches benefit only a limited subset of patients,leaving chemotherapy as the primary treatment modality for most patients.Chemotherapy is an essential adjunct to surgical resection,the only potentially curative option,playing a crucial role in reducing the tumor burden,delaying disease progression,and alleviating symptoms.However,its long-term efficacy is frequently undermined by the development of chemoresistance,wherein tumor cells adopt diverse strategies to evade or repair chemotherapy-induced damage.Addressing this critical barrier is imperative for improving the clinical outcomes of PDAC.This review comprehensively examines the multifaceted mechanisms of chemoresistance in PDAC and highlights innovative strategies designed to enhance chemosensitivity,thereby offering new hope for overcoming these challenges and improving patient survival.
基金financially supported by Ongoing Research Funding Program(ORF-2025-846),King Saud University,Riyadh,Saudi Arabia.
文摘This research investigates the application of digital images in military contexts by utilizing analytical equations to augment human visual capabilities.A comparable filter is used to improve the visual quality of the photographs by reducing truncations in the existing images.Furthermore,the collected images undergo processing using histogram gradients and a flexible threshold value that may be adjusted in specific situations.Thus,it is possible to reduce the occurrence of overlapping circumstances in collective picture characteristics by substituting grey-scale photos with colorized factors.The proposed method offers additional robust feature representations by imposing a limiting factor to reduce overall scattering values.This is achieved by visualizing a graphical function.Moreover,to derive valuable insights from a series of photos,both the separation and in-version processes are conducted.This involves analyzing comparison results across four different scenarios.The results of the comparative analysis show that the proposed method effectively reduces the difficulties associated with time and space to 1 s and 3%,respectively.In contrast,the existing strategy exhibits higher complexities of 3 s and 9.1%,respectively.
文摘This study was designed to enhance the soft clayey soil treatment effects using an innovative mechanochemically activated geopolymer(GP)through the optimized inclusion of nano-metakaolin(NM)and polypropylene fiber.The study also investigated the possible improvements in the binding ability of GP stabilization under different curing regimes.To this end,binders including lime alone,LG(slag-based geopolymer),LGNM(nano-modified LG with NM)and LGNMF(LGNM/fiber)mixture were separately added to soft soil samples.The fabricated composites were then subjected to a set of macro and micro level tests.The results indicated that,adding LG binary with a 20%NM replacement can lead to a significant increase(by nearly 21 times)in soil strength and a remarkable decline(about 70%)in the compression index.In fact,NM can play a great role in accelerating the rate of hydration reactions and forming a densely packed fabric,which staggeringly improve the soil hydromechanical attributes.It was also observed that raising the curing temperature will effectively augment the polymerization kinetics,leading to a substantial increase(~2 times)in the soil solidification process.However,the stabilized composites containing NM may reveal a brittle nature under more intense stress.Such a potential drawback seems to be resolved by the integration of fibers within the matrix.LGNM combined with fiber would boost(≥10 times)the energy absorption capacity of the soil,notably enhancing its residual strength.Overall,LGNMF may not only feature a broader range of benefits(inc.economic,technical,environmental)compared to traditional binders but also promote the ductility of the GP materials.
文摘Traditional Chinese medicine(TCM)offers diverse therapeutic compounds but faces challenges like poor bioavailability and instability.Recent innovations in drug delivery systems,including nanotechnology-based drug delivery systems have shown potential to enhance solubility,stability,and therapeutic efficacy.This review examines these advancements,focusing on their mechanisms and applications in improving TCM formulations.Cutting-edge techniques,such as microneedles,iontophoretic patches,and self-orienting applicators,are also discussed for their potential to revolutionize TCM delivery.By bridging traditional wisdom with modern innovations,this review emphasizes the transformative role of these strategies in advancing TCM's integration into contemporary medicine.
基金supported by a generous gift from The CH Foundationthe support from the Distinguished Graduate Student Assistantship and the Graduate Research Support Award at Texas Tech University+1 种基金the Aid fund from AAPGthe Matejek Family Faculty Fellowship。
文摘In-situ conversion of subsurface hydrocarbons via electromagnetic(EM)heating has emerged as a promising technology for producing carbon-zero and affordable hydrogen(H_(2))directly from natural gas reservoirs.However,the reaction pathways and role of water as an additional hydrogen donor in EM-assisted methane-to-hydrogen(CH_(4)-to-H_(2))conversion are poorly understood.Herein,we employ a combination of lab-scale EM-heating experiments and reaction modeling analyses to unravel reaction pathways and elucidate water's role in enhancing hydrogen production.The labelled hydrogen isotope of deuterium oxide(D_(2)O)is used to trace the sources of hydrogen.The results show that water significantly boosts hydrogen yield via coke gasification at around 400℃and steam methane reforming(SMR)reaction at over 600℃in the presence of sandstone.Water-gas shift reaction exhibits a minor impact on this enhancement.Reaction mechanism analyses reveal that the involvement of water can initiate auto-catalytic loop reactions with methane,which not only generates extra hydrogen but also produces OH radicals that enhance the reactants'reactivity.This work provides crucial insights into the reaction mechanisms involved in water-carbon-methane interactions and underscores water's potential as a hydrogen donor for in-situ hydrogen production from natural gas reservoirs.It also addresses the challenges related to carbon deposition and in-situ catalyst regeneration during EM heating,thus derisking this technology and laying a foundation for future pilots.
基金Project(2022A02480004)supported by the Major Project of China Railway Design CorporationProject(2023RC1011)supported by the Science and Technology Innovation Program of Hunan Province,China+2 种基金Project(2024JJ6515)supported by the Hunan Provincial Natural Science Foundation,ChinaProject(kq2402220)supported by the Natural Science Foundation of Changsha City,ChinaProject(52402438)supported by the National Natural Science Foundation of China。
文摘To enhance the resistance of honeycomb sandwich panel against local impact,this study delved into the matching relationship between face sheets and core.An integrated approach,combining experiment,simulation,and theoretical methods,was used.Local loading experiments were conducted to validate the accuracy of the finite element model.Furthermore,a control equation was formulated to correlate structural parameters with response modes,and a matching coefficientλ(representing the ratio of core thickness to face sheet thickness)was introduced to establish a link between these parameters and impact characteristics.A demand-driven reverse design methodology for structural parameters was developed,with numerical simulations employed to assess its effectiveness.The results indicate that the proposed theory can accurately predict response modes and key indicators.An increase in theλbolsters the structural indentation resistance while concurrently heightens the likelihood of penetration.Conversely,a decrease in theλimproves the resistance to penetration,albeit potentially leading to significant deformations in the rear face sheet.Numerical simulations demonstrate that the reverse design methodology significantly enhances the structural penetration resistance.Comparative analyses indicate that appropriate matching reduces indentation depth by 27.4% and indentation radius by 41.8%of the proposed structure.
基金supported by the Deanship of Graduate Studies and Scientific Research at Najran University through funding code NU/GP/MRC/13/771-1.
文摘Global mortality rates are greatly impacted by malignancies of the brain and nervous system.Although,Magnetic Resonance Imaging(MRI)plays a pivotal role in detecting brain tumors;however,manual assessment is time-consuming and susceptible to human error.To address this,we introduce ICA2-SVM,an advanced computational framework integrating Independent Component Analysis Architecture-2(ICA2)and Support Vector Machine(SVM)for automated tumor segmentation and classification.ICA2 is utilized for image preprocessing and optimization,enhancing MRI consistency and contrast.The Fast-MarchingMethod(FMM)is employed to delineate tumor regions,followed by SVM for precise classification.Validation on the Contrast-Enhanced Magnetic Resonance Imaging(CEMRI)dataset demonstrates the superior performance of ICA2-SVM,achieving a Dice Similarity Coefficient(DSC)of 0.974,accuracy of 0.992,specificity of 0.99,and sensitivity of 0.99.Additionally,themodel surpasses existing approaches in computational efficiency,completing analysis within 0.41 s.By integrating state-of-the-art computational techniques,ICA2-SVM advances biomedical imaging,offering a highly accurate and efficient solution for brain tumor detection.Future research aims to incorporate multi-physics modeling and diverse classifiers to further enhance the adaptability and applicability of brain tumor diagnostic systems.
基金Supported by the Shandong Province Medical and Health Science and Technology Development Plan Project,No.202203030713Science and Technology Program of Yantai Affiliated Hospital of Binzhou Medical University,No.YTFY2022KYQD06.
文摘In this article,we evaluate the findings of the study by Qian et al,which explores the efficacy of combining hyperthermia with opioid therapy for enhanced cancer pain management in patients with middle and late-stage gastrointestinal tumors.The study undertakes a retrospective analysis comparing traditional opioid therapy to an integrated approach of hyperthermia and opioids across 70 patients,highlighting significant benefits in pain control,reduction of opioid dosage,and minimization of adverse reactions.In our article,we not only discuss these fin-dings but also emphasize the broader implications for clinical practice,parti-cularly in enhancing patient outcomes through innovative pain management strategies.We advocate for further research to establish more robust data su-pporting this approach and to explore the mechanistic insights that enable these benefits.This discussion reflects on the potential paradigm shift in managing debilitating cancer-related pain,urging a reevaluation of current practices to incorporate these findings effectively.
基金funded by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University,grant number[R-2025-1637].
文摘The integration of visual elements,such as emojis,into educational content represents a promising approach to enhancing student engagement and comprehension.However,existing efforts in emoji integration often lack systematic frameworks capable of addressing the contextual and pedagogical nuances required for effective implementation.This paper introduces a novel framework that combines Data-Driven Error-Correcting Output Codes(DECOC),Long Short-Term Memory(LSTM)networks,and Multi-Layer Deep Neural Networks(ML-DNN)to identify optimal emoji placements within computer science course materials.The originality of the proposed system lies in its ability to leverage sentiment analysis techniques and contextual embeddings to align emoji recommendations with both the emotional tone and learning objectives of course content.A meticulously annotated dataset,comprising diverse topics in computer science,was developed to train and validate the model,ensuring its applicability across a wide range of educational contexts.Comprehensive validation demonstrated the system’s superior performance,achieving an accuracy of 92.4%,precision of 90.7%,recall of 89.3%,and an F1-score of 90.0%.Comparative analysis with baselinemodels and relatedworks confirms themodel’s ability tooutperformexisting approaches inbalancing accuracy,relevance,and contextual appropriateness.Beyond its technical advancements,this framework offers practical benefits for educators by providing an Artificial Intelligence-assisted(AI-assisted)tool that facilitates personalized content adaptation based on student sentiment and engagement patterns.By automating the identification of appropriate emoji placements,teachers can enhance digital course materials with minimal effort,improving the clarity of complex concepts and fostering an emotionally supportive learning environment.This paper contributes to the emerging field of AI-enhanced education by addressing critical gaps in personalized content delivery and pedagogical support.Its findings highlight the transformative potential of integrating AI-driven emoji placement systems into educational materials,offering an innovative tool for fostering student engagement and enhancing learning outcomes.The proposed framework establishes a foundation for future advancements in the visual augmentation of educational resources,emphasizing scalability and adaptability for broader applications in e-learning.
基金the Young Scientists Fund of the National Natural Science Foundation of China(52204063)the Key Laboratory of Shale Gas Exploration,Ministry of Natural Resources(Chongqing Institute of Geology and Mineral Resources),Chongqing,China(KLSGE-202202).
文摘This paper introduces a novel approach combining radial borehole fracturing with Water-Alternating-Gas(WAG)injection,enabling simultaneous WAG injection and shale oil production in a single vertical well.A numerical reservoir model incorporating the modified exponential non-Darcy law,stress sensitivity,and diffusion is established.The spatial distribution of permeability reduction shows that stress sensitivity enhances the non-Darcy effect,with apparent permeability decreasing to 0-92.1%of the initial value,highlighting the importance of maintaining reservoir pressure.Continuous CO_(2) flooding leads to early gas breakthrough,while continuous water flooding has less displacement efficiency.A 30%water-to-gas injection time ratio improves oil production and delays gas breakthrough compared to continuous CO_(2) injection.Optimal conditions for effective recovery are identified as an initial production period of 100 d and a well vertical spacing of 30 m.This study compares the production capacity of WAG operations under radial borehole fracturing and horizontal well fracturing.When the number of wells is two for both cases,the production capacity of radial borehole fracturing is comparable to that of five-stage horizontal well fracturing,indicating that radial borehole fracturing can serve as an alternative or supplement to horizontal well fracturing when the reservoir volume is limited.This study offers a new method and theoretical basis for the efficient development of shale oil.
基金the National Natural Science Foundation of China(U22B6005,52174043,52474035)the Beijing Natural Science Foundation(3242019)the China National Petroleum Corporation(CNPC)Innovation Foundation(2022DQ02-0208 and 2024DQ02-0114).
文摘High-water-cut mature reservoirs typically serve as the“ballast”for ensuring China’s annual crude oil production of 200 million tons.Despite the use of water flooding and chemical methods,over 40%of crude oil remains unexploited.It is critical to develop efficient revolutionary technologies to further enhance oil recovery(EOR)by a large percentage in high-water-cut mature reservoirs.To address this issue,the potential of vertical remaining oil in Daqing Oilfield is first analyzed from massive monitoring data.Using molecular dynamics simulation to design optimal synthetic routine,a copolymer without flu-orine or silicon is synthesized by modifying vinyl acetate(VAc)with maleic anhydride(MA)and styrene(St),and treated as a supercritical CO_(2)(scCO_(2))thickener.The underlying EOR mechanism of the scCO_(2) thickener is thereafter clarified by high-temperature,high-pressure oil displacement experiments.The EOR effect by thickened scCO_(2) flooding in a typical high-water-cut mature reservoir is predicted,and future technological advancements of the technique are ultimately discussed.Results show that the ver-tical remaining oil enriched in weakly swept zones is a primary target for further EOR in high-water-cut mature reservoirs.The copolymer typically exhibits good solubility,strong dispersion stability,and high thickening effect in scCO_(2).Under an ambient pressure of 10 MPa and a temperature of 50℃,the disso-lution of copolymer at a mass concentration of 0.2%can effectively increase the viscosity of scCO_(2) by 39.4 times.Due to the synergistic effect between expanding vertical swept volume and inhibiting gas channel-ing,crude oil recovery can be further enhanced by 23.1%for a typical high-water-cut mature reservoir when the scCO_(2) viscosity is increased by 50 times.Our understandings demonstrate that the thickened scCO_(2) flooding technology has significant technical advantages in high-water-cut mature reservoirs,with challenges and future development directions in field-scale applications also highlighted.
基金the funding support from the National Natural Science Foundation of China(22222902,22209062)the Natural Science Foundation of Jiangsu Province(BK20200047)+2 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(22KJB150004)the Youth Talent Promotion Project of Jiangsu Association for Science and Technology of China(JSTJ-2022-023)Undergraduate Innovation and Entrepreneurship Training Program(202310320066Z)。
文摘The utilization of solid-state electrolytes(SSEs)presents a promising solution to the issues of safety concern and shuttle effect in Li–S batteries,which has garnered significant interest recently.However,the high interfacial impedances existing between the SSEs and the electrodes(both lithium anodes and sulfur cathodes)hinder the charge transfer and intensify the uneven deposition of lithium,which ultimately result in insufficient capacity utilization and poor cycling stability.Hence,the reduction of interfacial resistance between SSEs and electrodes is of paramount importance in the pursuit of efficacious solid-state batteries.In this review,we focus on the experimental strategies employed to enhance the interfacial contact between SSEs and electrodes,and summarize recent progresses of their applications in solidstate Li–S batteries.Moreover,the challenges and perspectives of rational interfacial design in practical solid-state Li–S batteries are outlined as well.We expect that this review will provide new insights into the further technique development and practical applications of solid-state lithium batteries.
文摘The tropical roots and tuber crops (R and T) consist of cassava, sweet potato, yams, elephant foot yam, taro, tannia and a couple of minor tuber crops. Tropical tuber crops are the third most important food crops after cereals and pulses. These crops play a crucial role in providing food and nutritional security to the rural masses in Africa, Latin America and parts of Asia. Cassava and sweet potato rank among the top 10 food crops produced in developing countries and contribute to about 6% of world’s dietary calories. In India, tropical tubers are grown mostly in states like Odisha, West Bengal, Andhra Pradesh, Kerala, Tamil Nadu, Bihar and North East covering 4.5% of the total area under vegetables with 5.7% of the total vegetable production. Low income farmers and most undernourished households in India depend on R and T crops. They value these crops for their high calorie and stable yields under conditions in which other crops may fail. Genetic diversity of major tropical tuber crops provides options for its diverse usage in “multicuisine”, “nutrition”, “feed”, health care” and renewable resources of processing firms. Water productivity is also higher, for example, to produce 1 kg of tubers, sweet potatoes require water (383 l), taro (606 l), yam (343 l), as compared to rice (1673 l), maize (1222 l), wheat (1827 l), etc. Tuber crops are one of most efficient producers of dry matter and edible energy. These crops have potential to reverse soil degradation. Cassava is already recognized as drought tolerant followed by yam. Tubers of taro, elephant foot yam and yams can be stored under zero energy conditions for 6 - 7 months unlike temperate potatoes in cold storage. The natural climatic resilience as well as inherent nutrition attributes, has been explored further. Such studies made these crops more robust to changing climate and as the source of nutrient enriched food bowls. Sweet potato variety Bhu Krishna is the first purple flesh variety in India containing (90 mg/100 g anthocyanin) coupled with starch 22% - 25%. Similarly, the orange flesh Bhu Sona containing beta carotene (14 mg/100 g) coupled with high starch 22% - 24% is the first variety having both high beta carotene and high starch. These varieties are tolerant to salinity and Bhu Krishna is resistant to weevil. Likewise, developed improved taro varieties resistant to biotic blight stress, tolerant to salinity and are enriched with micro nutrients. These improved varieties are used to breed the superior types further. All these climate resilient, nutritionally enriched varieties will have a greater impact on supplementing rainbow food for all. These can address the issues like “food insecurity”, “malnutrition”, diet related issue of mass consumers across the world. The analysis of innovations on enhancing adaptability, nutritional quality with a management matrix would help in strengthening future programme.
文摘Online tracking mechanisms employed by internet companies for user profiling and targeted advertising raise major privacy concerns. Despite efforts to defend against these mechanisms, they continue to evolve, rendering many existing defences ineffective. This study performs a large-scale measurement of online tracking mechanisms across a large pool of websites using the OpenWPM (Open Web Privacy Measurement) platform. It systematically evaluates the effectiveness of several ad blockers and underlying Privacy Enhancing Technologies (PET) that are primarily used to mitigate different tracking techniques. By quantifying the strengths and limitations of these tools against modern tracking methods, the findings highlight gaps in existing privacy protections. Actionable recommendations are provided to enhance user privacy defences, guide tool developers and inform policymakers on addressing invasive online tracking practices.
基金Research on Education Leading and Promoting Industrial Development under the Background of the“Double First Class”Construction of the Discipline Development Research Fund of China University of Geosciences(Beijing):A Case Study of Zhihai Mai Village,Hualong County,Qinghai Province,2024XK225.
文摘The Decision of the Central Committee of the Communist Party of China and the State Council on Winning the Battle of Poverty Alleviation points out that by 2020,rural poor people will have stable access to food and clothing,and compulsory education,basic medical care,and housing security will be guaranteed.The growth rate of per capita disposable income of farmers in poverty-stricken areas is higher than the national average,and the main indicators of basic public services are close to the national average.According to the requirements,the poverty alleviation work team stationed in the village has tailored measures to local conditions and carried out targeted poverty alleviation.Faced with difficulties such as increasing the importance of education among villagers,solving the problem of children going to school,and increasing income for villagers,under the guidance of the assistance unit,the poverty alleviation work team adopts the method of setting an example to ensure education,introducing education to increase knowledge,and expanding knowledge through education going global,in order to change the current situation from point to surface.After unremitting efforts,the villagers began to change their mindset,and the enrollment and enrollment rates of village students were significantly increased.The children enter the classroom,the elderly work at home,and the young and strong labor force actively goes out to work.The villagers have motivation to work,and life has a bright future.The village sees hope.
基金Open Research Project of Henan Provincial Key Medicine Laboratory of Nursing(HNSYHLKT202303 and HNSYXZKT202441)Henan Provincial Key Scientific Programs for Universities(25A330004)Henan Provincial Innovative Training Program for Undergraduates(S202410472013)。
文摘The advancement of society and continuous improvements in the healthcare system have heightened the demands on professional nursing training,necessitating that nursing education better meet practical needs in an increasingly diversified medical environment.To address these requirements,the teaching approaches and assessment methods in nursing education should be reformed and updated.This study conducted a comprehensive analysis of the current state of nursing education and proposed potential pathways to enhance nursing education in medical schools.These pathways include implementing a student-centered teaching approach,incorporating various teaching activities,emphasizing the development of students’practical skills,and reforming assessment methods to cultivate well-rounded professionals.The application of these strategies will help improve the effectiveness of classroom teaching,deepen students’understanding of theoretical knowledge and practical skills,and thereby contribute to the improvement of nursing education quality.
基金supported by The Youth Project of the National Natural Science Foundation of China(No.82204623)Key scientific research projects in universities in Anhui Province(No.2022AH050471)+1 种基金Young Science and Technology Talents Cultivation Program of Anhui University of Traditional Chinese Medicine(No.2021qnyc04)Scientific Research Team Program of Anhui Colleges and Universities(No.2022AH010036).
文摘The theory of“Salt-processing enhancing drug into kidney meridian”was firstly put forward by Chen Jiamu,a medical doctor of Xin’an,in“Enlightening Primer of Materia Medica”.This theory integrates the theory of the five elements of Chinese medicine that the five flavors enter into the five viscera,and forms the theory of the role of the auxiliary materials of Chinese medicine concoctions.This theory is an important guiding significance for the clinical use of raw and cooked Chinese medicine tablets.At present,there are more studies on the theory of“Salt-processing enhancing drug into kidney meridian”in the literature,mainly focusing on the chemical composition,efficacy changes and the concoction mechanism of salt products of traditional Chinese medicines before and after salt preparation.There are relatively few review papers on the theory of“Salt-processing enhancing drug into kidney meridian”from the perspectives of auxiliary salt and attribution of meridians.In this paper,through reviewing relevant ancient books and literature,and on the basis of the previous review articles,this paper centers on the auxiliary salt,and conducts in-depth excavation and elaboration in terms of its sources,types,and the historical evolution of the salt production method.From the perspective of categorization,focusing on the core theory of“Kidney stores essence,governing reproduction,bone and generating marrow,water and brain”,we summarize the changes in efficacy before and after the salt preparation of kidney tonic traditional Chinese medicines,the changes in external and internal constituents as well as the scientific connotation of the concocting mechanism behind the effect-constituent changes.The scientific connotation of the concoction theory of“Salt-processing enhancing drug into kidney meridian”was initially elucidated,providing a new reference model for the study of the theory of Chinese medicine concoction attribution.
基金supported by the Natural Science Foundation of Shandong Province (No.ZR2021QE227)the Open Project of State Key Laboratory of Urban Water Resource and Environment (No.ES202120)+1 种基金the Taishan Scholars Program of Shandong Province,China (No.tsqn201812091)Key Research and Development Program (Major technical innovation projects)of Shandong Province (No.2020CXGC011204)。
文摘Coal chemical wastewater(CCW)is a type of refractory industrial wastewater,and its treatment has become the main bottleneck restricting the sustainable development of novel coal chemical industry.Biological treatment is considered as an economical,effective and environmentally friendly technology for CCW treatment.However,conventional biological process is difficult to achieve the efficient removal of refractory organics because of CCW with the characteristics of composition complexity and high toxicity.Therefore,seeking the novel enhancement strategy appears to be a favorable solution for enhancing biological treatment efficiency of CCW.This review focuses on presenting a comprehensive picture about the exogenous enhancement strategies for CCW biological treatment.The performance and potential application of exogenous enhancement strategies,including co-metabolic substrate enhancement,biofilm filler enhancement,adsorption material enhancement and conductive mediator enhancement,were expounded.Meanwhile,the enhancing mechanisms of different strategies were comprehensively discussed from a biological perspective.Furthermore,the prospects of enhancement strategies based on the engineering performance,economic cost and environmental impact(3E)evaluation were introduced.And novel enhancement strategy based on“low carbon emissions”,“resource recycling”and“water environment security”in the context of carbon neutrality was proposed.Taken together,this review provides technical reference and new direction to facilitate the regulation and optimization of typical industrial wastewater biological treatment.