Ecological security provides the basis of maintaining both a sustainable regional ecosystem and economic development.However,few studies have focused on how the features such as topography and geomorphology,lithologic...Ecological security provides the basis of maintaining both a sustainable regional ecosystem and economic development.However,few studies have focused on how the features such as topography and geomorphology,lithologic stratigraphic assemblages,and geohazard distribution affect the construction of ecological security patterns and the layout of optimization measures.In order to comprehensively reveal the key areas and key objects of ecological restoration in karst basins,this study takes the Beipan River Basin(BRB)as an example,constructs an ecological security pattern(ESP)based on the methods of morphological spatial pattern analysis(MSPA),landscape connectivity analysis and circuit theory,and lays out the optimization measures in combination with the spatial distribution characteristics of topographic and geomorphological differences and lithological stratigraphic combinations.The results show that 151 ecological sources,343 ecological corridors,121 pinch points and 178 barriers constitute the ESP of the BRB.Lithology is closely related to the spatial distribution characteristics of ecological source sites.Level 1 and 2 ecological sources(The ecological sources were categorized into level 1,level 2,and level 3 source from high to low importance.)are concentrated in the Emeishan basalt region of the upstream and the clastic and impure carbonate rock region of the downstream part of the BRB;level 3ecological sources are concentrated in the carbonate rock region of the midstream.Taking into account the outstanding ecological problems in the basin,and based on the characteristics of lithology and geohazard distribution,we propose the optimization scheme of“three axes,three zones and multiple points”for the ESP and the layout of specific measures of the BRB.The results can provide scientific references for maintaining ecological security maintenance in karst ecologically fragile areas.展开更多
Enhancing ecological security for sustainable social,economic,and environmental development is a key focus of current research and a practical necessity for ecological management.However,the integration of retrospecti...Enhancing ecological security for sustainable social,economic,and environmental development is a key focus of current research and a practical necessity for ecological management.However,the integration of retrospective ecological security assessments with future trend predictions and fine-scale targeted regulations remains inadequate,limiting effective ecological governance and sustainable regional development.Guided by Social-Economic-Natural Complex Ecosystems(SENCE)theory,this study proposes an analytical framework that integrates ecological security assessment,prediction,and zoning management.The Daqing River Basin,a typical river basin in the North China Plain,was selected as a case study.The results indicate that overall ecological security in the Daqing River Basin improved from a“Moderate”level to a“Relatively Safe”level between 2000 and 2020;however,spatial heterogeneity persisted,with higher ecological security in northwestern and eastern regions and lower ecological security in the central region.Approximately 62% of the Basin experienced an improvement in ecological security level,except in the major urban areas of Beijing,Tianjin,and Hebei,where ecological security deteriorated.From 2025 to 2040,the overall ecological security of the Daqing River Basin is expected to improve and remain at the“Relatively Safe”level.However,spatial heterogeneity will be further aggravated as the ecological security of major urban areas continues to deteriorate.Ecological security management zones and regulation strategies are proposed at the regional and county scales to emphasize integrated regulation for the entire basin and major urban areas.The proposed analytical framework provides valuable insights for advancing theoretical research on ecological security.The case study offers a practical reference for ecological security enhancement in river basins and other regions facing significant human-land conflicts.展开更多
Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security ...Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security of the Loess Plateau(LP) by integrating ecosystem health and ecosystem services, explores the varying impacts of ecosystem structure, quality, and services on ecological security index(ESI), and identifies the key driving factors of ESI using the Geodetector model. The results show that:(1) the average ESI indicates a relatively safe ecological status in LP with a significant increase in ESI observed in 50.21% of the region, largely due to the ecological restoration programs.(2) Natural factors predominantly influence ESI, although human factors play a significant role in the earthy-rocky mountain region and plateau wind-sand region.(3) The interactions between driving factors have a much greater impact on ESI than any single factor, with the interactions between precipitation and human factors being the most influential combination. This study provides a novel perspective on assessing ecological security in LP. We recommend that future ecological restoration efforts should consider the varying roles of ecosystem structure, quality, and services in ESI while tailoring strategies to the primary driving factors based on local conditions.展开更多
To address the contradiction between the rapid development of ski tourism and effective protection of the ecological environment,this study constructed the DPSIR-EES(Drive-Pressures-State-Impact-Response-Environment-E...To address the contradiction between the rapid development of ski tourism and effective protection of the ecological environment,this study constructed the DPSIR-EES(Drive-Pressures-State-Impact-Response-Environment-Economy-Society)model and Ski Tourism Destination Ecological Security System(STDESS)framework system.They form an integrated methodology system based on the“entropy weighting-hierarchical analysis-gray correlation projection”composite weighting method that can be used to clarify the intrinsic mechanism of ecological security in ski tourism destinations.Taking Chongli as a case study,this study evaluated the evolution of its ecological security from 1995 to 2023,predicted the ecological security early warning levels from 2024 to 2050,and analyzed the mechanism of influences on regional ecological security.The findings indicate that the ecological security of ski tourism destinations shows a significant“stepped leap–dynamic equilibrium”evolutionary path.The dynamic response mechanism of the subsystems is characterized by significant heterogeneity.The ecological security early warning system revealed the temporal and sequential differentiation of risk transmission.The factors influencing ecological security show the significant dual dominance of policy and climate.This paper enhances the applicability of ecological security systems within ski tourism contexts by analyzing their evolutionary characteristics,predicted future changes and impact factors,and it provides an effective case study for ecological improvement.展开更多
A robust ecological security network(ESN)is essential for ensuring regional ecological security,improving fragile ecological conditions,and promoting sustainable development.Climate change and land use/cover change(LU...A robust ecological security network(ESN)is essential for ensuring regional ecological security,improving fragile ecological conditions,and promoting sustainable development.Climate change and land use/cover change(LUCC)influence the structure and connectivity of the ESN by impacting ecosystem services(ESs).Previous studies primarily focused on the overall effects of LUCC on ESN changes,but they largely overlooked the effects of detailed LUCC transitions.In this study,we evaluated changes in the structure and connectivity of the ESN in the Songnen Plain(SNP),Northeast China,over the past 30 yr(1990s-2020s)using circuit theory and graph theory.We further explored the effects of climate change,LUCC,and detailed LUCC transformations on ESN changes through factorial control experiments.Results revealed a 24.86%decrease in ecological sources and a 27.06%decrease in ecological corridors,accompanied by a decline in ESN connectivity from the 1990s to the 2010s.Conversely,from the 2010s to the 2020s,ecological sources increased by 14.71%and ecological corridors increased by 25.71%due to ecological projects such as returning farmland to wetlands,resulting in an overall increase in ESN connectivity.The changes in ESN structure were primarily attributed to LUCC effects,followed by climate change effects and their interactions.In contrast,the changes in connectivity were significantly affected by climate change,followed by interactive effects and LUCC.Through detailed examination of LUCC transformation effects,we further found that the changes in ESN structure were primarily attributed to wetland loss,followed by deforestation and urban expansion.Meanwhile,the changes in ESN connectivity were mainly due to the effects of wetland loss,urban expansion and deforestation.Notably,the adverse effects of wetland loss partly offset climate change benefits on ESN.Our study offers valuable insights for developing future land management policies and implementing ecological projects,aimed at maintaining a stable ESN and ensuring sustainable human development.展开更多
Against the backdrop of intensifying global water scarcity,reclaimed water reuse has emerged as a critical strategy for ecological replenishment of landscape water bodies.However,its potential ecological risks remain ...Against the backdrop of intensifying global water scarcity,reclaimed water reuse has emerged as a critical strategy for ecological replenishment of landscape water bodies.However,its potential ecological risks remain underexplored.This study aims to establish a multidimensional ecological safety evaluation framework for reclaimed water replenishment systems and propose hierarchical risk prevention strategies.By integrating ecotoxicological assays(algae growth inhibition,Daphnia behavioral anomalies,zebrafish embryo toxicity),multimedia exposure modeling,and Monte Carlo probabilistic simulations,the risk contributions and spatial heterogeneity of typical pollutants are quantitatively analyzed.Results revealed that sulfamethoxazole(RQ=2.3)and diclofenac(RQ=1.8)posed high ecological risks,with their effects nonlinearly correlated with hydraulic retention time(HRT<3 days)and nutrient loading(TN>1.2 mg/L).A three-tier risk prevention system was developed based on the“source-pathway-receptor”framework:ozone-activated carbon pretreatment achieved 85%removal efficiency for pharmaceutical contaminants,ecological floating beds enhanced nitrogen and phosphorus retention by 40%-60%,and hydraulic regulation(flow velocity>0.1 m/s)effectively suppressed pathogen proliferation.The innovation of this study lies in establishing a chemical-biological-hydrological coupled risk quantification model for reclaimed water reuse scenarios.The hierarchical prevention standards have been incorporated into local reclaimed water management regulations,providing a scientific foundation and technical paradigm for sustainable landscape water replenishment.展开更多
The nature heritages are the precious legacy of nature with outstanding scientific and aesthetic value. They are quite different from other common ecotourism areas, because of its original and unique system, sensitive...The nature heritages are the precious legacy of nature with outstanding scientific and aesthetic value. They are quite different from other common ecotourism areas, because of its original and unique system, sensitive and vulnerable landscape, and peripheral cultural features. Therefore, the tourism development in the nature heritage sites should be on the premise of ecological security. The evaluation index system of tourism ecological security in nature heritage sites was constructed in this article by AHP and Delphi methods, including nature ecological security, landscape visual security and local culture ecological security, and the security thresholds of indices were also established. In the indices' weights of the evaluation model, the nature ecological security ranked the highest, followed by tourist landscape visual security and culture ecological security, which reflected the influence degree of the limited factor to tourism ecological security. Then, this paper carried out an empirical study of Kanas of Xinjiang Uygur Autonomous Region, China, which has the potential to be the World Nature Heritage. On the basis of the data attained from survey and observation on the spot, as well as questionnaire answered by tourists and local communities, the ecological security status in Kanas was evaluated. The result showed that the status of Kanas tourism ecological security was better, but there had some limiting factors. Lastly, effective measures were put forward to ensure its ecological security.展开更多
[Objective] This study aimed to investigate the driving mechanism of eco- logical security in vulnerable areas in mountain and plain. [Method] The ecological security evaluation index system of Lincheng County was est...[Objective] This study aimed to investigate the driving mechanism of eco- logical security in vulnerable areas in mountain and plain. [Method] The ecological security evaluation index system of Lincheng County was established using PSR model. Driving mechanism was analyzed in total system and subsystems respectively by the principal components. The ecological safety driving factor was calculated through the total system and subsystem respectively. And the intersection was adopt- ed as dominant driving factor. [Result] A total of 10 indices including density index of rivers, land degradation index, farmland drought and flood insurance yield, human in- terference index, population density, the natural population growth rate, per capita GDP, the R&D funds spending accounts for the proportion of GDP, laborer by edu- cation degree and three industry accounted for the proportion of GDP, are the domi- nant driving factors of the regional ecological security. [Conclusion] This study will pro- vide reasonable and feasible advice for the benign development of the area.展开更多
Based on the status of land ecological resources in Hohhot, 20 indexes covering nature, resource environment, economy and society were selected and the evaluation index system was established. With the principal compo...Based on the status of land ecological resources in Hohhot, 20 indexes covering nature, resource environment, economy and society were selected and the evaluation index system was established. With the principal component analysis, the land ecological security of Hohhot from 2009 to 2015 was analyzed. The results showed that the land ecological security of Hohhot was declining year by year in 2009-2015. Besides, per capital GDP and public green area, the proportion of in- dustry and the price index of agricultural and animal husbandry production materials were the key factors influencing the land ecological security of Hohhot. The key for protection of the land ecological security may lie in the protection of land quality and prevention of land degradation in farming and stock-breeding areas.展开更多
[Objective] The study aimed at assessing the ecological security of Red River basin in Guangxi. [Method] Firstly, the ecological security assessment index system of Red River basin was established based on the framewo...[Objective] The study aimed at assessing the ecological security of Red River basin in Guangxi. [Method] Firstly, the ecological security assessment index system of Red River basin was established based on the framework of 'pressure-state-response' model, and index information of ecological security assessment was extracted by using RS and GIS technology; afterwards, the ecological security of Red River basin was divided into five grades according to ecological security index, and the distribution and characteristics of ecological security at various levels were analyzed; finally, the measures to maintain the ecological security of Red River basin were put forward on the basis of problems in ecological security. [Result] Most areas of Red River basin in Guangxi were in generally safe state, especially Lingyun County, Fengshan County, Du'an County, Dahua County, Shanglin County, Binyang County, Guiping City, etc., and the area accounted for 74.25% of total area; next came safer state (12.74%), the regions in the two states above were the most important environmental areas of Red River basin. The ecological security problems of Red River basin were mainly related to fragile ecological environment, lagging economic development, rapid population growth, excessive development and utilization of natural resources and so forth. [Conclusion] The research could provide scientific references for the rational development and utilization of land resources, protection and construction of ecological environment in Red River basin.展开更多
The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological securit...The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.展开更多
Based on related literature and this research, an ecological security evaluation from the pixel scale to the small watershed or county scale was presented using remote sensing data and related models. With the driver-...Based on related literature and this research, an ecological security evaluation from the pixel scale to the small watershed or county scale was presented using remote sensing data and related models. With the driver-pressure, state and exposure to pollution-response (DPSER) model as a basis, a conceptual framework of regional ecological evaluation and an index system were established. The extraction and standardization of evaluation indices were carried out with GIS techniques, an information extraction model and a data standardization model. The conversion of regional ecological security results from the pixel scale to a small watershed or county scale was obtained with an evaluation model and a scaling model. Two conceptual scale conversion models of regional ecological security from the pixel scale to the county scale were proposed: 1) scale conversion of ecological security regime results from plxel to small watershed; and 2) scale conversion from pixel to county. These research results could provide useful ideas for regional ecological security evaluation as well as ecological and environmental management.展开更多
In order toclarify regional ecological security status and formation mechanism of regional ecological security barriers in underdeveloped regions of China,we took Yunnan province as a case to evaluate its regional eco...In order toclarify regional ecological security status and formation mechanism of regional ecological security barriers in underdeveloped regions of China,we took Yunnan province as a case to evaluate its regional ecological security by using entropy matter-element model,comprehensive index and GIS spatial method,and we diagnosed itsobstacle factors through obstacle degree model. We found a low overall level of regional ecological security in Yunnan. Only Kunmingfell into the good level, 68% of the regions were below the critical safe level. For the vast majority of regions in Yunnan, their regional ecological security was unstable. The indexes related to per capita resources, geological and topographyenvironment, economic, and technologywere at the unsafe or dangerous level.The indexes related to urban expansion, level of income, cultivated land quality were at the level of critical safety. The indexes concerning urban management capacity, airqualityand waterenvironment were at the good or ideallevel. Yunnan's regional ecological security was not good due to natural obstructive environment itself, simultaneously lower backward economic and social level restricted the ability of ecological security response to manage ragile ecological environment. The results of the composite index wereroughly consistent with those of the entropy weight matterelement model. The mean values of the classification index,from high to low, were: the state index>the response index>the pressure index. The state index and the response index had a significant mutual promotion to each other.The regions with good composite index, state index and response index mainly distributed in the central regions of Yunnan Province. Spatial autocorrelation of regional ecological security level in Yunnan was not obvious. Water resources, economic and social development were main obstacle factors of the regional ecological security.When distinguishing with obstacle type, Kunming belonged to natural ecological environment barrier type, while other regions belonged to economic and social barrier type.展开更多
Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustaina...Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustainable development of social economy. Ecological environment pre-warning has become a hotspot for the modern environment science. This paper introduces the theories of ecological security pre-warning and tries to constitute a pre-warning model of ecological security. In terms of pressure-state-response model, the pre-warning guide line of ecological security is constructed while the pre-warning degree judging model of ecological security is established based on fuzzy optimization. As a case, the model is used to assess the present condition pre-warning of the ecological security of Anhui Province. The result is in correspondence with the real condition: the ecological security situations of 8 cities are dangerous and 9 cities are secure. The result shows that this model is scientific and effective for regional ecological security pre-warning.展开更多
Studying an ecological restoration zoning process under the background of ecological security patterns is of great significance to the rapid adjustment and optimization of a landscape pattern.In this study,a remote se...Studying an ecological restoration zoning process under the background of ecological security patterns is of great significance to the rapid adjustment and optimization of a landscape pattern.In this study,a remote sensing ecological index and a morphological spatial pattern analysis method were used to assess the quality of habitats and identify ecological sources in the city of Ningbo;ecological corridors,ecological pinch points,and ecological barrier points were extracted by using a circuit theory to construct ecological security patterns and ecological restoration zones.The results indicate:(1)There were 47 ecological sources,and 83 key ecological corridors in Ningbo,and the ecological land area was about 1898.39 km^(2),accounting for 19.89%of the total study area.(2)The ecological source areas were distributed in“one patch and three belts”,and the low-resistance ecological corridors were concentrated in southern Yuyao city,western Haishu district,and central and western Fenghua district;the ecological network in the western and southern regions was dense.(3)There were four types of ecological restoration zones that need to be established,which were prioritized restoration zones,prioritized protection zones,key conservation zones,and general conservation zones distributed hierarchically from inner part towards outside.(4)Ninghai county,Yuyao city,and Fenghua district had large ecological land areas,however,prioritized restoration and protection zones in Ninghai and Fenghua were also large.The analysis results are expected to provide a reference for optimizing a territorial ecological space in a city.展开更多
Ecological security assessment and early warning research possess the attributes of spatiality, non-linearity and randomicity, so we must process much spatial information. Spatial analysis and data management are the ...Ecological security assessment and early warning research possess the attributes of spatiality, non-linearity and randomicity, so we must process much spatial information. Spatial analysis and data management are the advantages of GIS, which can define distribution trend and spatial relations of environmental factors, and show ecological security pattern graphically. Spatial differences of ecological security assessment based on GIS are discussed in this paper, of which the middle and lower reaches of the Liaohe River is taken as a study case. First, to work out pressure-state-response (P-S-R) assessment indicators system, and investigate in person and gather information; second, to digitize the watershed; third, to quantize and calculate by the fuzzy method; last, to construct GIS grid database, and expound spatial differences of ecological security by GIS interpolation and assembly analysis.展开更多
The ecological footprint concept and its calculation models are useful for the measurement of the sustainable level of social and economic development.The ecological security situation of the Three Gorges Reservoir Ar...The ecological footprint concept and its calculation models are useful for the measurement of the sustainable level of social and economic development.The ecological security situation of the Three Gorges Reservoir Area(TGRA) was evaluated using this concept in this study.The construction of the Three Gorges Reservoir has led to the change in the ecology and immigration status of TGRA.The ecological footprint method is an important means to study the regional ecological security.Our results suggested that,by excluding the areas for biodiversity conservation(12% of the total land),the ecological footprint per capita was 0.57895 ha,which exceeded the ecological carrying capacity in TGRA.The total ecological deficit was found to be 11,522,193.34 ha,accounting for 95.02% of the ecological carrying capacity.These findings suggested that the ecological security of TGRA was not good.In order to compensate for the ecological deficit,it was essential to introduce natural resources from other regions.展开更多
The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a...The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a fragile ecological environment.Firstly,using high-resolution data of land use in the watershed from the past 30 years,landscape ecological risk(LER)sample units are defined and an ecological risk index(ERI)model is constructed.Kriging interpolation is used to display the LER spatial patterns,and the temporal and spatial evolution of risk is examined.Secondly,the spatial evolution of land use landscape change(LULC)is analyzed,and the correlation between land use landscape and ecological risk is discussed.Finally,Based on the LER model,a risk-based minimum cumulative resistance(MCR)model is established,and a comprehensive protection and management network system for the ecological source-corridor-node system designed.The results suggest that in the past 30 years,LER has a high spatial correlation and areas with extremely high ecological risks are concentrated in northwest and southeast areas of the region,of which the northwest area accounts for the highest proportion.Risk intensity is closely related to the spatial pattern of land use landscape.ERI values of forestland,grasslands,and unused land and farmland are low,medium,and high,respectively.The trend of risk evolution is“overall improvement and partial deterioration”.Man-made construction and exploitation is the most direct reason for the increase of local ecological risks.The high ecological-risk areas in the northwest are dominated by deserts which reduce excessive interference by human activities on the natural landscape.Recommendations are:high-quality farmland should be protected;forestland should be restored and rebuilt;repair and adjust the existing ecosystem to assist in landscape regeneration and reconstruction;utilize the overall planning vision of“mountain,water,forest,field,lake,grass,sand”to design a management project at the basin scale;adhere to problem-oriented and precise policy implementation.展开更多
Ecological security is the foundation and guarantee of sustainable development,and its importance is increasingly widely recognized and valued by the world.The Yangtze River Basin is an important ecological security b...Ecological security is the foundation and guarantee of sustainable development,and its importance is increasingly widely recognized and valued by the world.The Yangtze River Basin is an important ecological security barrier in China and the Wanjiang City Belt(WCB)along the Yangtze River is directly related to the ecological security pattern of the entire basin.Based on the Driver-Pressure-State-Impact-Response(DPSIR)model and a geographical information system(GIS)platform,an ecosystem security evaluation index system was constructed to measure and evaluate the evolution of ecosystem security in the WCB,China.Results showed that:1)From 2000 to 2018,the overall level of ecological security in the study area was in a state of either early warning or medium warning,but the level of ecological security in each prefecture-level city was significantly different.2)From the perspective of the evolution of the ecosystem,the value of its comprehensive evaluation index dropped from 4.255 in 2000 to 3.885 in 2018.From the perspective of subsystems,the value of Pressure comprehensive evaluation index is much higher than that of other subsystems,indicating that during the rapid development of the social economy,the pressure on the natural environment tended to rise,and triggered changes in the State and Response subsystems.3)The coefficient of variation(CV)of the Driver was much higher than other factors influencing the ecological security system.There are large differences in the economic development and ecological evolution of the cities in the WCB.This study has improved the theoretical research on regional ecological security,and has certain practical guiding significance for building a beautiful,green and sustainable China and promoting global ecological security.展开更多
Following the trends of Chinese rural transformation development, and the sustainable development goals for resources and environment, reasonable arranging the potential development space and the ecological space, so ...Following the trends of Chinese rural transformation development, and the sustainable development goals for resources and environment, reasonable arranging the potential development space and the ecological space, so as to optimize the distributions of rural settlement would be the key challenge for rural areas in ecologically fragile regions. From the perspective of maintaining regional ecological security, this paper takes Da’an City, a typical ecological fragile region in Jilin Province, as the case area, constructing the comprehensive ecological security pattern(ESP) on basis of landscape ecology, and applying the landscape pattern indexes to quantitative analysis the spatial distribution characteristics of rural settlements. Then, different optimization directions and management strategies are put forward for rural settlements in each secure zone under the comprehensive ESP. The experimental results showed that 1) the area of the low security zone, the general security zone, the moderate security zone and the extreme security zone was 1570.18 km^2, 1463.36 km^2, 1215.80 km^2 and 629.77 km^2, representing 32.18%, 29.99%, 24.92% and 12.91% of the total area of the target area, respectively. 2) The rural settlements in Da’an City were characterized by a high degree of fragmentation with a large number of small-scale patches. 3) The area of rural settlements in the ecological relocation zone, the in situ remediation zone, the limited development zone and the key development zone was 22.80 km^2, 42.31 km^2, 36.28 km^2 and 19.40 km^2, accounting for 18.88%, 35.03%, 30.04% and 16.06% of the total area of rural settlements, respectively. Then, different measures were proposed for settlements in different optimization zones in order to scientifically plan important ecological space, production space and living space in rural areas. This paper aims to provide fundamental support for rural settlements based on redistribution from the perspective of landscape ecology and provide insights for rural planning and rural habitat environmental improvement.展开更多
基金jointly supported by the Key Project of the Natural Science Foundation of Guizhou Province(No.Qiankehe Jichu-ZK[2023]Zhongdian027)the Project of the Science and Technology Innovation Base Construction of Guizhou Province(No.Qiankehe Zhongyindi[2023]005)Philosophy and Social Science Planning Subjects in Guizhou Province in 2022(No.22GZYB53)。
文摘Ecological security provides the basis of maintaining both a sustainable regional ecosystem and economic development.However,few studies have focused on how the features such as topography and geomorphology,lithologic stratigraphic assemblages,and geohazard distribution affect the construction of ecological security patterns and the layout of optimization measures.In order to comprehensively reveal the key areas and key objects of ecological restoration in karst basins,this study takes the Beipan River Basin(BRB)as an example,constructs an ecological security pattern(ESP)based on the methods of morphological spatial pattern analysis(MSPA),landscape connectivity analysis and circuit theory,and lays out the optimization measures in combination with the spatial distribution characteristics of topographic and geomorphological differences and lithological stratigraphic combinations.The results show that 151 ecological sources,343 ecological corridors,121 pinch points and 178 barriers constitute the ESP of the BRB.Lithology is closely related to the spatial distribution characteristics of ecological source sites.Level 1 and 2 ecological sources(The ecological sources were categorized into level 1,level 2,and level 3 source from high to low importance.)are concentrated in the Emeishan basalt region of the upstream and the clastic and impure carbonate rock region of the downstream part of the BRB;level 3ecological sources are concentrated in the carbonate rock region of the midstream.Taking into account the outstanding ecological problems in the basin,and based on the characteristics of lithology and geohazard distribution,we propose the optimization scheme of“three axes,three zones and multiple points”for the ESP and the layout of specific measures of the BRB.The results can provide scientific references for maintaining ecological security maintenance in karst ecologically fragile areas.
基金supported by the project of the National Natural Science Foundation of China(42330705).
文摘Enhancing ecological security for sustainable social,economic,and environmental development is a key focus of current research and a practical necessity for ecological management.However,the integration of retrospective ecological security assessments with future trend predictions and fine-scale targeted regulations remains inadequate,limiting effective ecological governance and sustainable regional development.Guided by Social-Economic-Natural Complex Ecosystems(SENCE)theory,this study proposes an analytical framework that integrates ecological security assessment,prediction,and zoning management.The Daqing River Basin,a typical river basin in the North China Plain,was selected as a case study.The results indicate that overall ecological security in the Daqing River Basin improved from a“Moderate”level to a“Relatively Safe”level between 2000 and 2020;however,spatial heterogeneity persisted,with higher ecological security in northwestern and eastern regions and lower ecological security in the central region.Approximately 62% of the Basin experienced an improvement in ecological security level,except in the major urban areas of Beijing,Tianjin,and Hebei,where ecological security deteriorated.From 2025 to 2040,the overall ecological security of the Daqing River Basin is expected to improve and remain at the“Relatively Safe”level.However,spatial heterogeneity will be further aggravated as the ecological security of major urban areas continues to deteriorate.Ecological security management zones and regulation strategies are proposed at the regional and county scales to emphasize integrated regulation for the entire basin and major urban areas.The proposed analytical framework provides valuable insights for advancing theoretical research on ecological security.The case study offers a practical reference for ecological security enhancement in river basins and other regions facing significant human-land conflicts.
基金National Natural Science Foundation of China,No.42371103Natural Science Basic Research Plan in Shaanxi Province of China,No.2023-JC-YB-229。
文摘Understanding the local ecological security status and its underlying drivers can be used as an effective reference for balancing ecosystem development with societal needs. This study assesses the ecological security of the Loess Plateau(LP) by integrating ecosystem health and ecosystem services, explores the varying impacts of ecosystem structure, quality, and services on ecological security index(ESI), and identifies the key driving factors of ESI using the Geodetector model. The results show that:(1) the average ESI indicates a relatively safe ecological status in LP with a significant increase in ESI observed in 50.21% of the region, largely due to the ecological restoration programs.(2) Natural factors predominantly influence ESI, although human factors play a significant role in the earthy-rocky mountain region and plateau wind-sand region.(3) The interactions between driving factors have a much greater impact on ESI than any single factor, with the interactions between precipitation and human factors being the most influential combination. This study provides a novel perspective on assessing ecological security in LP. We recommend that future ecological restoration efforts should consider the varying roles of ecosystem structure, quality, and services in ESI while tailoring strategies to the primary driving factors based on local conditions.
基金National Natural Science Foundation of China,No.42471284,No.42071199Beijing Social Science Foundation,No.22GLB036。
文摘To address the contradiction between the rapid development of ski tourism and effective protection of the ecological environment,this study constructed the DPSIR-EES(Drive-Pressures-State-Impact-Response-Environment-Economy-Society)model and Ski Tourism Destination Ecological Security System(STDESS)framework system.They form an integrated methodology system based on the“entropy weighting-hierarchical analysis-gray correlation projection”composite weighting method that can be used to clarify the intrinsic mechanism of ecological security in ski tourism destinations.Taking Chongli as a case study,this study evaluated the evolution of its ecological security from 1995 to 2023,predicted the ecological security early warning levels from 2024 to 2050,and analyzed the mechanism of influences on regional ecological security.The findings indicate that the ecological security of ski tourism destinations shows a significant“stepped leap–dynamic equilibrium”evolutionary path.The dynamic response mechanism of the subsystems is characterized by significant heterogeneity.The ecological security early warning system revealed the temporal and sequential differentiation of risk transmission.The factors influencing ecological security show the significant dual dominance of policy and climate.This paper enhances the applicability of ecological security systems within ski tourism contexts by analyzing their evolutionary characteristics,predicted future changes and impact factors,and it provides an effective case study for ecological improvement.
基金Under the auspices of National Key Research and Development Program of China(No.2022YFF1300904)the National Natural Science Foundation of China(No.42271119,42371075,42471127)+1 种基金Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2023238)Jilin Province Science and Technology Development Plan Project(No.20230203001SF)。
文摘A robust ecological security network(ESN)is essential for ensuring regional ecological security,improving fragile ecological conditions,and promoting sustainable development.Climate change and land use/cover change(LUCC)influence the structure and connectivity of the ESN by impacting ecosystem services(ESs).Previous studies primarily focused on the overall effects of LUCC on ESN changes,but they largely overlooked the effects of detailed LUCC transitions.In this study,we evaluated changes in the structure and connectivity of the ESN in the Songnen Plain(SNP),Northeast China,over the past 30 yr(1990s-2020s)using circuit theory and graph theory.We further explored the effects of climate change,LUCC,and detailed LUCC transformations on ESN changes through factorial control experiments.Results revealed a 24.86%decrease in ecological sources and a 27.06%decrease in ecological corridors,accompanied by a decline in ESN connectivity from the 1990s to the 2010s.Conversely,from the 2010s to the 2020s,ecological sources increased by 14.71%and ecological corridors increased by 25.71%due to ecological projects such as returning farmland to wetlands,resulting in an overall increase in ESN connectivity.The changes in ESN structure were primarily attributed to LUCC effects,followed by climate change effects and their interactions.In contrast,the changes in connectivity were significantly affected by climate change,followed by interactive effects and LUCC.Through detailed examination of LUCC transformation effects,we further found that the changes in ESN structure were primarily attributed to wetland loss,followed by deforestation and urban expansion.Meanwhile,the changes in ESN connectivity were mainly due to the effects of wetland loss,urban expansion and deforestation.Notably,the adverse effects of wetland loss partly offset climate change benefits on ESN.Our study offers valuable insights for developing future land management policies and implementing ecological projects,aimed at maintaining a stable ESN and ensuring sustainable human development.
文摘Against the backdrop of intensifying global water scarcity,reclaimed water reuse has emerged as a critical strategy for ecological replenishment of landscape water bodies.However,its potential ecological risks remain underexplored.This study aims to establish a multidimensional ecological safety evaluation framework for reclaimed water replenishment systems and propose hierarchical risk prevention strategies.By integrating ecotoxicological assays(algae growth inhibition,Daphnia behavioral anomalies,zebrafish embryo toxicity),multimedia exposure modeling,and Monte Carlo probabilistic simulations,the risk contributions and spatial heterogeneity of typical pollutants are quantitatively analyzed.Results revealed that sulfamethoxazole(RQ=2.3)and diclofenac(RQ=1.8)posed high ecological risks,with their effects nonlinearly correlated with hydraulic retention time(HRT<3 days)and nutrient loading(TN>1.2 mg/L).A three-tier risk prevention system was developed based on the“source-pathway-receptor”framework:ozone-activated carbon pretreatment achieved 85%removal efficiency for pharmaceutical contaminants,ecological floating beds enhanced nitrogen and phosphorus retention by 40%-60%,and hydraulic regulation(flow velocity>0.1 m/s)effectively suppressed pathogen proliferation.The innovation of this study lies in establishing a chemical-biological-hydrological coupled risk quantification model for reclaimed water reuse scenarios.The hierarchical prevention standards have been incorporated into local reclaimed water management regulations,providing a scientific foundation and technical paradigm for sustainable landscape water replenishment.
基金Under the auspices of National Natural Science Foundation of China (No. 40671057)Knowledge Innovation Pro-grams of Chinese Academy of Sciences (No. KZCX3-SW-355)
文摘The nature heritages are the precious legacy of nature with outstanding scientific and aesthetic value. They are quite different from other common ecotourism areas, because of its original and unique system, sensitive and vulnerable landscape, and peripheral cultural features. Therefore, the tourism development in the nature heritage sites should be on the premise of ecological security. The evaluation index system of tourism ecological security in nature heritage sites was constructed in this article by AHP and Delphi methods, including nature ecological security, landscape visual security and local culture ecological security, and the security thresholds of indices were also established. In the indices' weights of the evaluation model, the nature ecological security ranked the highest, followed by tourist landscape visual security and culture ecological security, which reflected the influence degree of the limited factor to tourism ecological security. Then, this paper carried out an empirical study of Kanas of Xinjiang Uygur Autonomous Region, China, which has the potential to be the World Nature Heritage. On the basis of the data attained from survey and observation on the spot, as well as questionnaire answered by tourists and local communities, the ecological security status in Kanas was evaluated. The result showed that the status of Kanas tourism ecological security was better, but there had some limiting factors. Lastly, effective measures were put forward to ensure its ecological security.
基金Supported by Hebei Provincial Natural Science Fund for Youth (D2010001566)Projects of Hebei Academy of Science and Technology (12116, 13140)Hebei Key Technology Research and Development Program (11237126D)~~
文摘[Objective] This study aimed to investigate the driving mechanism of eco- logical security in vulnerable areas in mountain and plain. [Method] The ecological security evaluation index system of Lincheng County was established using PSR model. Driving mechanism was analyzed in total system and subsystems respectively by the principal components. The ecological safety driving factor was calculated through the total system and subsystem respectively. And the intersection was adopt- ed as dominant driving factor. [Result] A total of 10 indices including density index of rivers, land degradation index, farmland drought and flood insurance yield, human in- terference index, population density, the natural population growth rate, per capita GDP, the R&D funds spending accounts for the proportion of GDP, laborer by edu- cation degree and three industry accounted for the proportion of GDP, are the domi- nant driving factors of the regional ecological security. [Conclusion] This study will pro- vide reasonable and feasible advice for the benign development of the area.
基金Supported by the Funding Project for the Youth of Education Ministry for the Development of Liberal Arts and Social Sciences(12YJC790058)the Guidance Plan Project for the Natural Science Foundation of Hubei(2013CFC089)the Open-end Fund of Hubei Ecological Culture Research Center,China University of Geosciences(Wuhan)~~
文摘Based on the status of land ecological resources in Hohhot, 20 indexes covering nature, resource environment, economy and society were selected and the evaluation index system was established. With the principal component analysis, the land ecological security of Hohhot from 2009 to 2015 was analyzed. The results showed that the land ecological security of Hohhot was declining year by year in 2009-2015. Besides, per capital GDP and public green area, the proportion of in- dustry and the price index of agricultural and animal husbandry production materials were the key factors influencing the land ecological security of Hohhot. The key for protection of the land ecological security may lie in the protection of land quality and prevention of land degradation in farming and stock-breeding areas.
基金Supported by Natural Science Foundation of Guangxi, China (0679026)
文摘[Objective] The study aimed at assessing the ecological security of Red River basin in Guangxi. [Method] Firstly, the ecological security assessment index system of Red River basin was established based on the framework of 'pressure-state-response' model, and index information of ecological security assessment was extracted by using RS and GIS technology; afterwards, the ecological security of Red River basin was divided into five grades according to ecological security index, and the distribution and characteristics of ecological security at various levels were analyzed; finally, the measures to maintain the ecological security of Red River basin were put forward on the basis of problems in ecological security. [Result] Most areas of Red River basin in Guangxi were in generally safe state, especially Lingyun County, Fengshan County, Du'an County, Dahua County, Shanglin County, Binyang County, Guiping City, etc., and the area accounted for 74.25% of total area; next came safer state (12.74%), the regions in the two states above were the most important environmental areas of Red River basin. The ecological security problems of Red River basin were mainly related to fragile ecological environment, lagging economic development, rapid population growth, excessive development and utilization of natural resources and so forth. [Conclusion] The research could provide scientific references for the rational development and utilization of land resources, protection and construction of ecological environment in Red River basin.
基金funded by National Natural Science Foundation Project (40801077)Ministry of Education Key Project (209100)+1 种基金Natural Science Foundation of Chongqing ( CSTC, 2008BB7367 )Chongqing Municipal Education Commission of Science and Technology Research Grant Project (KJ070811)~~
文摘The area,the scope as well as some ecological environment questions in Three Gorges Reservoir was briefly introduced. Then its early warning-system frame was preliminarily constructed,which includes ecological security dynamic monitoring,ecological security appraisal,ecological security forecast and ecological security decision-making management. The synthetic evaluation indicator system of the ecological security quality were initially established,which includes ecological environment pollution,land use and land cover change,geological hazard and epidemic outbreaks. At the same time,29 evaluating indicators were selected,divides into the basic factors,response factors and inducing factors,which need to be Real-time monitored.
基金Project supported by the National Natural Science Foundation of China (No. 40301002) and the State EnvironmentalProtection Administration of China.
文摘Based on related literature and this research, an ecological security evaluation from the pixel scale to the small watershed or county scale was presented using remote sensing data and related models. With the driver-pressure, state and exposure to pollution-response (DPSER) model as a basis, a conceptual framework of regional ecological evaluation and an index system were established. The extraction and standardization of evaluation indices were carried out with GIS techniques, an information extraction model and a data standardization model. The conversion of regional ecological security results from the pixel scale to a small watershed or county scale was obtained with an evaluation model and a scaling model. Two conceptual scale conversion models of regional ecological security from the pixel scale to the county scale were proposed: 1) scale conversion of ecological security regime results from plxel to small watershed; and 2) scale conversion from pixel to county. These research results could provide useful ideas for regional ecological security evaluation as well as ecological and environmental management.
基金funded by the National Science-technology Support Plan Projects of China (Grant No.2015BAD07B0105)Yunnan Education Department Fundof China (2014Y315)
文摘In order toclarify regional ecological security status and formation mechanism of regional ecological security barriers in underdeveloped regions of China,we took Yunnan province as a case to evaluate its regional ecological security by using entropy matter-element model,comprehensive index and GIS spatial method,and we diagnosed itsobstacle factors through obstacle degree model. We found a low overall level of regional ecological security in Yunnan. Only Kunmingfell into the good level, 68% of the regions were below the critical safe level. For the vast majority of regions in Yunnan, their regional ecological security was unstable. The indexes related to per capita resources, geological and topographyenvironment, economic, and technologywere at the unsafe or dangerous level.The indexes related to urban expansion, level of income, cultivated land quality were at the level of critical safety. The indexes concerning urban management capacity, airqualityand waterenvironment were at the good or ideallevel. Yunnan's regional ecological security was not good due to natural obstructive environment itself, simultaneously lower backward economic and social level restricted the ability of ecological security response to manage ragile ecological environment. The results of the composite index wereroughly consistent with those of the entropy weight matterelement model. The mean values of the classification index,from high to low, were: the state index>the response index>the pressure index. The state index and the response index had a significant mutual promotion to each other.The regions with good composite index, state index and response index mainly distributed in the central regions of Yunnan Province. Spatial autocorrelation of regional ecological security level in Yunnan was not obvious. Water resources, economic and social development were main obstacle factors of the regional ecological security.When distinguishing with obstacle type, Kunming belonged to natural ecological environment barrier type, while other regions belonged to economic and social barrier type.
基金Undertheauspicesof China Postdoctoral Science Foundation (No.2004035175), and the Natural Science Founda-tionof Anhui Provincial Bureau of Education (No.2003KJ043ZD)
文摘Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustainable development of social economy. Ecological environment pre-warning has become a hotspot for the modern environment science. This paper introduces the theories of ecological security pre-warning and tries to constitute a pre-warning model of ecological security. In terms of pressure-state-response model, the pre-warning guide line of ecological security is constructed while the pre-warning degree judging model of ecological security is established based on fuzzy optimization. As a case, the model is used to assess the present condition pre-warning of the ecological security of Anhui Province. The result is in correspondence with the real condition: the ecological security situations of 8 cities are dangerous and 9 cities are secure. The result shows that this model is scientific and effective for regional ecological security pre-warning.
基金National Natural Science Foundation of China,No.41976209。
文摘Studying an ecological restoration zoning process under the background of ecological security patterns is of great significance to the rapid adjustment and optimization of a landscape pattern.In this study,a remote sensing ecological index and a morphological spatial pattern analysis method were used to assess the quality of habitats and identify ecological sources in the city of Ningbo;ecological corridors,ecological pinch points,and ecological barrier points were extracted by using a circuit theory to construct ecological security patterns and ecological restoration zones.The results indicate:(1)There were 47 ecological sources,and 83 key ecological corridors in Ningbo,and the ecological land area was about 1898.39 km^(2),accounting for 19.89%of the total study area.(2)The ecological source areas were distributed in“one patch and three belts”,and the low-resistance ecological corridors were concentrated in southern Yuyao city,western Haishu district,and central and western Fenghua district;the ecological network in the western and southern regions was dense.(3)There were four types of ecological restoration zones that need to be established,which were prioritized restoration zones,prioritized protection zones,key conservation zones,and general conservation zones distributed hierarchically from inner part towards outside.(4)Ninghai county,Yuyao city,and Fenghua district had large ecological land areas,however,prioritized restoration and protection zones in Ninghai and Fenghua were also large.The analysis results are expected to provide a reference for optimizing a territorial ecological space in a city.
文摘Ecological security assessment and early warning research possess the attributes of spatiality, non-linearity and randomicity, so we must process much spatial information. Spatial analysis and data management are the advantages of GIS, which can define distribution trend and spatial relations of environmental factors, and show ecological security pattern graphically. Spatial differences of ecological security assessment based on GIS are discussed in this paper, of which the middle and lower reaches of the Liaohe River is taken as a study case. First, to work out pressure-state-response (P-S-R) assessment indicators system, and investigate in person and gather information; second, to digitize the watershed; third, to quantize and calculate by the fuzzy method; last, to construct GIS grid database, and expound spatial differences of ecological security by GIS interpolation and assembly analysis.
基金supported by the National Natural Science Foundation of China (Grant Nos41201274/D010505 and 41071350/D011201)the National Basic Research Program of China (973Program,Grant No. 2010CB951704)
文摘The ecological footprint concept and its calculation models are useful for the measurement of the sustainable level of social and economic development.The ecological security situation of the Three Gorges Reservoir Area(TGRA) was evaluated using this concept in this study.The construction of the Three Gorges Reservoir has led to the change in the ecology and immigration status of TGRA.The ecological footprint method is an important means to study the regional ecological security.Our results suggested that,by excluding the areas for biodiversity conservation(12% of the total land),the ecological footprint per capita was 0.57895 ha,which exceeded the ecological carrying capacity in TGRA.The total ecological deficit was found to be 11,522,193.34 ha,accounting for 95.02% of the ecological carrying capacity.These findings suggested that the ecological security of TGRA was not good.In order to compensate for the ecological deficit,it was essential to introduce natural resources from other regions.
基金National Natural Science Foundation of China,No.41601290。
文摘The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a fragile ecological environment.Firstly,using high-resolution data of land use in the watershed from the past 30 years,landscape ecological risk(LER)sample units are defined and an ecological risk index(ERI)model is constructed.Kriging interpolation is used to display the LER spatial patterns,and the temporal and spatial evolution of risk is examined.Secondly,the spatial evolution of land use landscape change(LULC)is analyzed,and the correlation between land use landscape and ecological risk is discussed.Finally,Based on the LER model,a risk-based minimum cumulative resistance(MCR)model is established,and a comprehensive protection and management network system for the ecological source-corridor-node system designed.The results suggest that in the past 30 years,LER has a high spatial correlation and areas with extremely high ecological risks are concentrated in northwest and southeast areas of the region,of which the northwest area accounts for the highest proportion.Risk intensity is closely related to the spatial pattern of land use landscape.ERI values of forestland,grasslands,and unused land and farmland are low,medium,and high,respectively.The trend of risk evolution is“overall improvement and partial deterioration”.Man-made construction and exploitation is the most direct reason for the increase of local ecological risks.The high ecological-risk areas in the northwest are dominated by deserts which reduce excessive interference by human activities on the natural landscape.Recommendations are:high-quality farmland should be protected;forestland should be restored and rebuilt;repair and adjust the existing ecosystem to assist in landscape regeneration and reconstruction;utilize the overall planning vision of“mountain,water,forest,field,lake,grass,sand”to design a management project at the basin scale;adhere to problem-oriented and precise policy implementation.
基金Under the auspices of National Natural Science Foundation of China(No.41571124)。
文摘Ecological security is the foundation and guarantee of sustainable development,and its importance is increasingly widely recognized and valued by the world.The Yangtze River Basin is an important ecological security barrier in China and the Wanjiang City Belt(WCB)along the Yangtze River is directly related to the ecological security pattern of the entire basin.Based on the Driver-Pressure-State-Impact-Response(DPSIR)model and a geographical information system(GIS)platform,an ecosystem security evaluation index system was constructed to measure and evaluate the evolution of ecosystem security in the WCB,China.Results showed that:1)From 2000 to 2018,the overall level of ecological security in the study area was in a state of either early warning or medium warning,but the level of ecological security in each prefecture-level city was significantly different.2)From the perspective of the evolution of the ecosystem,the value of its comprehensive evaluation index dropped from 4.255 in 2000 to 3.885 in 2018.From the perspective of subsystems,the value of Pressure comprehensive evaluation index is much higher than that of other subsystems,indicating that during the rapid development of the social economy,the pressure on the natural environment tended to rise,and triggered changes in the State and Response subsystems.3)The coefficient of variation(CV)of the Driver was much higher than other factors influencing the ecological security system.There are large differences in the economic development and ecological evolution of the cities in the WCB.This study has improved the theoretical research on regional ecological security,and has certain practical guiding significance for building a beautiful,green and sustainable China and promoting global ecological security.
基金the auspices of the National Natural Science Foundation of China(No.41571152,41771179)the Social Science Foundation of Jilin Province,China(No.2019B56)。
文摘Following the trends of Chinese rural transformation development, and the sustainable development goals for resources and environment, reasonable arranging the potential development space and the ecological space, so as to optimize the distributions of rural settlement would be the key challenge for rural areas in ecologically fragile regions. From the perspective of maintaining regional ecological security, this paper takes Da’an City, a typical ecological fragile region in Jilin Province, as the case area, constructing the comprehensive ecological security pattern(ESP) on basis of landscape ecology, and applying the landscape pattern indexes to quantitative analysis the spatial distribution characteristics of rural settlements. Then, different optimization directions and management strategies are put forward for rural settlements in each secure zone under the comprehensive ESP. The experimental results showed that 1) the area of the low security zone, the general security zone, the moderate security zone and the extreme security zone was 1570.18 km^2, 1463.36 km^2, 1215.80 km^2 and 629.77 km^2, representing 32.18%, 29.99%, 24.92% and 12.91% of the total area of the target area, respectively. 2) The rural settlements in Da’an City were characterized by a high degree of fragmentation with a large number of small-scale patches. 3) The area of rural settlements in the ecological relocation zone, the in situ remediation zone, the limited development zone and the key development zone was 22.80 km^2, 42.31 km^2, 36.28 km^2 and 19.40 km^2, accounting for 18.88%, 35.03%, 30.04% and 16.06% of the total area of rural settlements, respectively. Then, different measures were proposed for settlements in different optimization zones in order to scientifically plan important ecological space, production space and living space in rural areas. This paper aims to provide fundamental support for rural settlements based on redistribution from the perspective of landscape ecology and provide insights for rural planning and rural habitat environmental improvement.