期刊文献+
共找到12,344篇文章
< 1 2 250 >
每页显示 20 50 100
Dynamic Multi-Graph Spatio-Temporal Graph Traffic Flow Prediction in Bangkok:An Application of a Continuous Convolutional Neural Network
1
作者 Pongsakon Promsawat Weerapan Sae-dan +2 位作者 Marisa Kaewsuwan Weerawat Sudsutad Aphirak Aphithana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期579-607,共29页
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u... The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets. 展开更多
关键词 Graph neural networks convolutional neural network deep learning dynamic multi-graph SPATIO-TEMPORAL
在线阅读 下载PDF
DIGNN-A:Real-Time Network Intrusion Detection with Integrated Neural Networks Based on Dynamic Graph
2
作者 Jizhao Liu Minghao Guo 《Computers, Materials & Continua》 SCIE EI 2025年第1期817-842,共26页
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr... The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics. 展开更多
关键词 Intrusion detection graph neural networks attention mechanisms line graphs dynamic graph neural networks
在线阅读 下载PDF
Estimation of peer pressure in dynamic homogeneous social networks
3
作者 Jie Liu Pengyi Wang +1 位作者 Jiayang Zhao Yu Dong 《中国科学技术大学学报》 北大核心 2025年第5期36-49,35,I0001,I0002,共17页
Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision p... Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model. 展开更多
关键词 dynamic network game theory HOMOGENEITY peer pressure social interaction
在线阅读 下载PDF
PFC-FDEM multi-scale cross-platform numerical simulation of thermal crack network evolution and SHTB dynamic mechanical response of rocks
4
作者 Yue Zhai Shaoxu Hao +1 位作者 Shi Liu Yu Jia 《International Journal of Mining Science and Technology》 2025年第9期1555-1589,共35页
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla... Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications. 展开更多
关键词 Thermal geomechanics Thermo-mechanical coupling phenomena Fracture network propagation PFC-FDEM dynamic mechanical response
在线阅读 下载PDF
Dynamic partition of urban network considering congestion evolution based on random walk
5
作者 Zhen-Tong Feng Lele Zhang +1 位作者 Yong-Hong Wu Mao-Bin Hu 《Chinese Physics B》 2025年第1期530-534,共5页
The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networ... The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method. 展开更多
关键词 urban road networks dynamic partitioning random walk Akaike information criterion perimeter control
原文传递
Enhancing hydrogel predictive modeling:an augmented neural network approach for swelling dynamics in pH-responsive hydrogels
6
作者 M.A.FARAJI M.ASKARI-SEDEH +1 位作者 A.ZOLFAGHARIAN M.BAGHANI 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1787-1808,共22页
The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional expe... The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional experimental methods struggle to capture stress distributions due to technical limitations,while numerical approaches are often computationally intensive.This study presents a hybrid framework combining analytical modeling and machine learning(ML)to overcome these challenges.An analytical model is used to simulate transient swelling behaviors and stress distributions,and is confirmed to be viable through the comparison of the obtained simulation results with the existing experimental swelling data.The predictions from this model are used to train neural networks,including a two-step augmented architecture.The initial neural network predicts hydration values,which are then fed into a second network to predict stress distributions,effectively capturing nonlinear interdependencies.This approach achieves mean absolute errors(MAEs)as low as 0.031,with average errors of 1.9%for the radial stress and 2.55%for the hoop stress.This framework significantly enhances the predictive accuracy and reduces the computational complexity,offering actionable insights for optimizing hydrogel-based systems. 展开更多
关键词 transient swelling pH-responsive hydrogel neural network data-driven model hydration and stress dynamics
在线阅读 下载PDF
Graph neural networks unveil universal dynamics in directed percolation
7
作者 Ji-Hui Han Cheng-Yi Zhang +3 位作者 Gao-Gao Dong Yue-Feng Shi Long-Feng Zhao Yi-Jiang Zou 《Chinese Physics B》 2025年第8期540-545,共6页
Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investig... Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains. 展开更多
关键词 graph neural networks non-equilibrium phase transition directed percolation model nonlinear dynamics
原文传递
Dynamic Route Optimization for Multi-Vehicle Systems with Diverse Needs in Road Networks Based on Preference Games
8
作者 Jixiang Wang Jing Wei +2 位作者 Siqi Chen Haiyang Yu Yilong Ren 《Computers, Materials & Continua》 2025年第6期4167-4192,共26页
The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicl... The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicleto-infrastructure coordination frameworks partially address congestion mitigation,they often neglect priority-aware optimization and exhibit algorithmic bias toward dominant vehicle classes—critical limitations in mixed-priority scenarios involving emergency vehicles.To bridge this gap,this study proposes a preference game-theoretic coordination framework with adaptive strategy transfer protocol,explicitly balancing system-wide efficiency(measured by network throughput)with priority vehicle rights protection(quantified via time-sensitive utility functions).The approach innovatively combines(1)a multi-vehicle dynamic routing model with quantifiable preference weights,and(2)a distributed Nash equilibrium solver updated using replicator sub-dynamic models.The framework was evaluated on an urban road network containing 25 intersections with mixed priority ratios(10%–30%of vehicles with priority access demand),and the framework showed consistent benefits on four benchmarks(Social routing algorithm,Shortest path algorithm,The comprehensive path optimisation model,The emergency vehicle timing collaborative evolution path optimization method)showed consistent benefits.Results showthat across different traffic demand configurations,the proposed method reduces the average vehicle traveling time by at least 365 s,increases the road network throughput by 48.61%,and effectively balances the road loads.This approach successfully meets the diverse traffic demands of various vehicle types while optimizing road resource allocations.The proposed coordination paradigm advances theoretical foundations for fairness-aware traffic optimization while offering implementable strategies for next-generation cooperative vehicle-road systems,particularly in smart city deployments requiring mixed-priority mobility guarantees. 展开更多
关键词 Preference game vehicle road coordination large-scale road network different needs dynamic route selection
在线阅读 下载PDF
Star point positioning for large dynamic star sensors in near space based on capsule network
9
作者 Zhen LIAO Hongyuan WANG +3 位作者 Xunjiang ZHENG Yunzhao ZANG Yinxi LU Shuai YAO 《Chinese Journal of Aeronautics》 2025年第2期418-431,共14页
In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a s... In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a star point positioning algorithm based on the capsule network whose input and output are both vectors. First, a PCTL (Probability-Coordinate Transformation Layer) is designed to represent the mapping relationship between the probability output of the capsule network and the star point sub-pixel coordinates. Then, Coordconv Layer is introduced to implement explicit encoding of space information and the probability is used as the centroid weight to achieve the conversion between probability and star point sub-pixel coordinates, which improves the network’s ability to perceive star point positions. Finally, based on the dynamic imaging principle of star sensors and the characteristics of near-space environment, a star map dataset for algorithm training and testing is constructed. The simulation results show that the proposed algorithm reduces the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) of the star point positioning by 36.1% and 41.7% respectively compared with the traditional algorithm. The research results can provide important theory and technical support for the scheme design, index demonstration, test and evaluation of large dynamic star sensors in near space. 展开更多
关键词 Star point positioning Star trackers Capsule network Deep learning dynamic imaging Near space application
原文传递
Delay bounded routing with the maximum belief degree for dynamic uncertain networks
10
作者 MA Ji KANG Rui +3 位作者 LI Ruiying ZHANG Qingyuan LIU Liang WANG Xuewang 《Journal of Systems Engineering and Electronics》 2025年第1期127-138,共12页
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo... Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds. 展开更多
关键词 dynamic uncertain network uncertainty theory epistemic uncertainty delay bounded routing maximum belief degree
在线阅读 下载PDF
Three-Level Intrusion Detection Model for Wireless Sensor Networks Based on Dynamic Trust Evaluation
11
作者 Xiaogang Yuan Huan Pei Yanlin Wu 《Computers, Materials & Continua》 2025年第9期5555-5575,共21页
In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stabili... In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stability,data transmission reliability,and overall performance.To effectively address this issue and significantly improve intrusion detection speed,accuracy,and resistance to malicious attacks,this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation(TIDM-DTE).This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust,communication trust,and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption changes.By dynamically predicting node trust values using the grey Markov model,the model accurately and sensitively reflects changes in node trust levels during attacks.Additionally,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)data noise monitoring technology is employed to quickly identify attacked nodes,while a trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate.Simulation results demonstrate that TIDM-DTE achieves high detection rates,fast detection speed,and low False Alarm Rate when identifying various network attacks,including selective forwarding attacks,Sybil attacks,switch attacks,and black hole attacks.TIDM-DTE significantly enhances network security,ensures secure and reliable data transmission,moderately improves network energy efficiency,reduces unnecessary energy consumption,and provides strong support for the stable operation of WSNs.Meanwhile,the research findings offer new ideas and methods for WSN security protection,possessing important theoretical significance and practical application value. 展开更多
关键词 Wireless sensor networks intrusion detection dynamic trust evaluation data noise detection trust recovery mechanism
在线阅读 下载PDF
A Dynamic Social Network Graph Anonymity Scheme with Community Structure Protection
12
作者 Yuanjing Hao Xuemin Wang +2 位作者 Liang Chang Long Li Mingmeng Zhang 《Computers, Materials & Continua》 2025年第2期3131-3159,共29页
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ... Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL. 展开更多
关键词 dynamic social network graph k-composition anonymity community structure protection graph publishing security and privacy
在线阅读 下载PDF
A Dynamic Self Organizing TDMA MAC for Long-Range Ad Hoc Networks
13
作者 Ding Lianghui Sheng Wenfeng +2 位作者 Tian Feng Sun Baichang Yang Feng 《China Communications》 2025年第9期212-225,共14页
Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most impor... Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most important parts impacting the whole network performance.In this paper,we propose a dis-tributed TDMA-based MAC protocol called Dynamic Self Organizing TDMA(DSO-TDMA)for wide area ad hoc networks.DSO-TDMA includes three main features:(1)In a distributed way,nodes in the network select transmitting slots according to the congestion situation of the local air interface.(2)In a selforganization way,nodes dynamically adjust the resource occupancy ratio according to the queue length of neighbouring nodes within two-hop range.(3)In a piggyback way,the control information is transmitted together with the payload to reduce the overhead.We design the whole mechanisms,implement them in NS-3 and evaluate the performance of DSO-TDMA compared with another dynamic TDMA MAC protocol,EHR-TDMA.Results show that the end-to-end throughput of DSO-TDMA is at most 51.4%higher than that of EHR-TDMA,and the average access delay of DSO-TDMA is at most 66.05%lower than that of EHR-TDMA. 展开更多
关键词 dynamic TDMA media access control wide area broadband ad hoc networks
在线阅读 下载PDF
Accelerated proton transport modulates dynamic hydrogen bonding networks in eutectic gel electrolytes for low-temperature aqueous Zn-metal batteries
14
作者 Baonian Zhu Yuefeng Yan +8 位作者 Jingzhe Hong Yuhao Xia Meixiu Song Xiaoshuang Wang Yanan Liu Bo Zhong Dongdong Liu Tao Zhang Xiaoxiao Huang 《Journal of Energy Chemistry》 2025年第10期325-336,共12页
Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transpo... Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transport is indispensable for the establishment of HBs.Here,the accelerated proton transport modulates the dynamic hydrogen bonding network of a Zn(BF4)2/EMIMBF4impregnated polyacrylamide/poly(vinyl alcohol)/xanthan gum dual network eutectic gel electrolyte(PPX-ILZSE)for lowtemperature AZMBs.The PPX-ILZSE forms more HBs,shorter HBs lifetimes,higher tetrahedral entropy,and faster desolvation processes,as demonstrated by experimental and theoretical calculations.This enhanced dynamic proton transport promotes rapid cycling of HBs formation-failure,and for polyaniline cathode(PANI)abundant redox sites of proton,confers excellent low temperature electrochemical performance to the Zn//PANI full cell.Specific capacities for 1000 and 5000 cycles at 1 and 5 A g^(-1)were149.8 and 128.4 m A h g^(-1)at room temperature,respectively.Furthermore,specific capacities of 131.1 mA hg^(-1)(92.4%capacity retention)and 0.0066%capacity decay per lap were achieved for 3000and 3500 laps at-30 and 40℃,respectively,at 0.5 A g^(-1).Furthermore,in-situ protective layer of ZnOHF nano-arrays on the Zn anode surface to eliminate dendrite growth and accelerate Zn-ions adsorption and charge transfer. 展开更多
关键词 Aqueous Zn-metal battery Anti-freezing eutectic gel electrolyte Proton transport dynamic hydrogen bonding network Polyaniline cathode
在线阅读 下载PDF
A Neural Network-Driven Method for State of Charge Estimation Using Dynamic AC Impedance in Lithium-Ion Batteries
15
作者 Yi-Feng Luo Guan-Jhu Chen +1 位作者 Chun-Liang Liu Yen-Tse Chung 《Computers, Materials & Continua》 2025年第4期823-844,共22页
As lithium-ion batteries become increasingly prevalent in electric scooters,vehicles,mobile devices,and energy storage systems,accurate estimation of remaining battery capacity is crucial for optimizing system perform... As lithium-ion batteries become increasingly prevalent in electric scooters,vehicles,mobile devices,and energy storage systems,accurate estimation of remaining battery capacity is crucial for optimizing system performance and reliability.Unlike traditional methods that rely on static alternating internal resistance(SAIR)measurements in an open-circuit state,this study presents a real-time state of charge(SOC)estimation method combining dynamic alternating internal resistance(DAIR)with artificial neural networks(ANN).The system simultaneously measures electrochemical impedance various frequencies,discharge C-rate,and battery surface temperature during the∣Z∣atdischarge process,using these parameters for ANN training.The ANN,leveraging its superior nonlinear system modeling capabilities,effectively captures the complex nonlinear relationships between AC impedance and SOC through iterative training.Compared to other machine learning approaches,the proposed ANN features a simpler architecture and lower computational overhead,making it more suitable for integration into battery management system(BMS)microcontrollers.In tests conducted with Samsung batteries using lithium cobalt oxide cathode material,the method achieved an overall average error of merely 0.42%in self-validation,with mean absolute errors(MAE)for individual SOCs not exceeding 1%.Secondary validation demonstrated an overall average error of 1.24%,with MAE for individual SOCs below 2.5%.This integrated DAIR-ANN approach not only provides enhanced estimation accuracy but also simplifies computational requirements,offering a more effective solution for battery management in practical applications. 展开更多
关键词 Lithium-ion batteries state of charge(SOC) dynamic AC impedance artificial neural network(ANN)
在线阅读 下载PDF
Performance Evaluation of Dynamic Adaptive Routing(DAR)for Unmanned Aerial Vehicle(UAV)Networks
16
作者 Khadija Slimani Samira Khoulji +1 位作者 Hamed Taherdoost Mohamed Larbi Kerkeb 《Computers, Materials & Continua》 2025年第11期4115-4132,共18页
Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitor... Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks. 展开更多
关键词 dynamic adaptive routing(DAR) UAV networks NS-3 simulation packet delivery ratio(PDR) energy efficiency
在线阅读 下载PDF
Dynamic Task Offloading and Resource Allocation for Air-Ground Integrated Networks Based on MADDPG
17
作者 Jianbin Xue Peipei Mao +2 位作者 Luyao Wang Qingda Yu Changwang Fan 《Journal of Beijing Institute of Technology》 2025年第3期243-267,共25页
With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for ... With the rapid growth of connected devices,traditional edge-cloud systems are under overload pressure.Using mobile edge computing(MEC)to assist unmanned aerial vehicles(UAVs)as low altitude platform stations(LAPS)for communication and computation to build air-ground integrated networks(AGINs)offers a promising solution for seamless network coverage of remote internet of things(IoT)devices in the future.To address the performance demands of future mobile devices(MDs),we proposed an MEC-assisted AGIN system.The goal is to minimize the long-term computational overhead of MDs by jointly optimizing transmission power,flight trajecto-ries,resource allocation,and offloading ratios,while utilizing non-orthogonal multiple access(NOMA)to improve device connectivity of large-scale MDs and spectral efficiency.We first designed an adaptive clustering scheme based on K-Means to cluster MDs and established commu-nication links,improving efficiency and load balancing.Then,considering system dynamics,we introduced a partial computation offloading algorithm based on multi-agent deep deterministic pol-icy gradient(MADDPG),modeling the multi-UAV computation offloading problem as a Markov decision process(MDP).This algorithm optimizes resource allocation through centralized training and distributed execution,reducing computational overhead.Simulation results show that the pro-posed algorithm not only converges stably but also outperforms other benchmark algorithms in han-dling complex scenarios with multiple devices. 展开更多
关键词 air-ground integrated network(AGIN) resource allocation dynamic task offloading multi-agent deep deterministic policy gradient(MADDPG) non-orthogonal multiple access(NOMA)
暂未订购
Image super‐resolution via dynamic network 被引量:4
18
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
在线阅读 下载PDF
Dynamic modeling and RBF neural network compensation control for space flexible manipulator with an underactuated hand 被引量:3
19
作者 Dongyang SHANG Xiaopeng LI +1 位作者 Meng YIN Fanjie LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期417-439,共23页
In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur... In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH. 展开更多
关键词 Space flexible manipulator RBF neural network Underactuated hand dynamic models Model simplification
原文传递
Identification of failure behaviors of underground structures under dynamic loading using machine learning 被引量:1
20
作者 Chun Zhu Yingze Xu +5 位作者 Manchao He Yujing Jiang Murat Karakus Lihua Hu Yalong Jiang Fuqiang Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第1期414-431,共18页
Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of d... Understanding the dynamic responses of hard rocks is crucial during deep mining and tunneling activities and when constructing nuclear waste repositories. However, the response of deep massive rocks with openings of different shapes and orientations to dynamic loading is not well understood. Therefore, this study investigates the dynamic responses of hard rocks of deep underground excavation activities. Split Hopkins Pressure Bar (SHPB) tests on granite with holes of different shapes (rectangle, circle, vertical ellipse (elliptical short (ES) axis parallel to the impact load direction), and horizontal ellipse (elliptical long (EL) axis parallel to the impact load direction)) were carried out. The influence of hole shape and location on the dynamic responses was analyzed to reveal the rocks' dynamic strengths and cracking characteristics. We used the ResNet18 (convolutional neural network-based) network to recognize crack types using high-speed photographs. Moreover, a prediction model for the stress-strain response of rocks with different openings was established using Deep Neural Network (DNN). The results show that the dynamic strengths of the granite with EL and ES holes are the highest and lowest, respectively. The strength-weakening coefficient decreases first and then increases with an increase of thickness-span ratio (h/L). The weakening of the granite with ES holes is the most obvious. The ResNet18 network can improve the analyzing efficiency of the cracking mechanism, and the trained model's recognition accuracy reaches 99%. Finally, the dynamic stress-strain prediction model can predict the complete stress-strain curve well, with an accuracy above 85%. 展开更多
关键词 dynamic mechanical response Cracking mode Hole shape/location effect Deep Neural network(DNN) Stress-strain prediction
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部