The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr...The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.展开更多
Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision p...Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model.展开更多
This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is pr...This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.展开更多
Milling force is key to the understanding of cutting mechanism and the control of machining process.Traditional milling force models have limited prediction accuracy due to their simplified conditions and incomplete k...Milling force is key to the understanding of cutting mechanism and the control of machining process.Traditional milling force models have limited prediction accuracy due to their simplified conditions and incomplete knowledge contained for model construction.On the other hand,due to the lack of guidance from physics,the data-driven models lack interpretability,making them challenging to generalize to practical applications.To meet these difficulties,a deep network model guided by milling dynamics is proposed in this study to predict the instantaneous milling force and spindle vibration under varying cutting conditions.The model uses a milling dynamics model to generate data sets to pre-train the deep network and then integrates the experimental data for fine-tuning to improve the model’s generalization and accuracy.Additionally,the vibration equation is incorporated into the loss function as the physical constraint,enhancing the model’s interpretability.A milling experiment is conducted to validate the effectiveness of the proposed model,and the results indicate that the physics incorporated could improve the network learning capability and interpretability.The predicted results are in good agreement with the measured values,with an average error as low as 2.6705%.The prediction accuracy is increased by 24.4367%compared to the pure data-driven model.展开更多
Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-pla...Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications.展开更多
The integration of satellite communication network and cellular network has a great potential to enable ubiquitous connectivity in future communication networks.Among numerous related application scenarios,the direct ...The integration of satellite communication network and cellular network has a great potential to enable ubiquitous connectivity in future communication networks.Among numerous related application scenarios,the direct connection of mobile phone to satellite has attracted increasing attention.However,the spectrum scarcity in the sub-6 GHz band and low spectrum utilization prevents its popularity.To address these problem,in this paper,we propose a dynamic spectrum sharing method for satellite network and cellular network based on beam-hopping.Specifically,we first develop a centralized dynamic spectrum sharing architecture based on beam-hopping,and propose a delay pre-compensation scheme for beam hopping pattern.Then,an optimization problem is formulated to maximize the overall capacity of the integrated network,with considering the service requirements,the fairness between beam positions and mixed co-channel interference,etc.To solve this problem,a polling-based dynamic resource allocation algorithm is proposed.Simulation results confirm that the proposed algorithm can effectively reduce the serious cochannel interference between different beams or different systems,and improve the spectrum utilization rate as well as system capacity.展开更多
The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networ...The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method.展开更多
The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional expe...The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional experimental methods struggle to capture stress distributions due to technical limitations,while numerical approaches are often computationally intensive.This study presents a hybrid framework combining analytical modeling and machine learning(ML)to overcome these challenges.An analytical model is used to simulate transient swelling behaviors and stress distributions,and is confirmed to be viable through the comparison of the obtained simulation results with the existing experimental swelling data.The predictions from this model are used to train neural networks,including a two-step augmented architecture.The initial neural network predicts hydration values,which are then fed into a second network to predict stress distributions,effectively capturing nonlinear interdependencies.This approach achieves mean absolute errors(MAEs)as low as 0.031,with average errors of 1.9%for the radial stress and 2.55%for the hoop stress.This framework significantly enhances the predictive accuracy and reduces the computational complexity,offering actionable insights for optimizing hydrogel-based systems.展开更多
Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investig...Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains.展开更多
The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly d...The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly dynamic networks remains a significant challenge.In this paper,we propose an online learning-based resource scheduling scheme for satellite-terrestrial integrated networks(STINs)aimed at providing on-demand services with minimal resource utilization.Specifically,we focus on:①accurately characterizing the STIN channel,②predicting resource demand with uncertainty guarantees,and③implementing mixed timescale resource scheduling.For the STIN channel,we adopt the 3rd Generation Partnership Project channel and antenna models for non-terrestrial networks.We employ a one-dimensional convolution and attention-assisted long short-term memory architecture for average demand prediction,while introducing conformal prediction to mitigate uncertainties arising from burst traffic.Additionally,we develop a dual-timescale optimization framework that includes resource reservation on a larger timescale and resource adjustment on a smaller timescale.We also designed an online resource scheduling algorithm based on online convex optimization to guarantee long-term performance with limited knowledge of time-varying network information.Based on the Network Simulator 3 implementation of the STIN channel under our high-fidelity satellite Internet simulation platform,numerical results using a real-world dataset demonstrate the accuracy and efficiency of the prediction algorithms and online resource scheduling scheme.展开更多
The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicl...The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicleto-infrastructure coordination frameworks partially address congestion mitigation,they often neglect priority-aware optimization and exhibit algorithmic bias toward dominant vehicle classes—critical limitations in mixed-priority scenarios involving emergency vehicles.To bridge this gap,this study proposes a preference game-theoretic coordination framework with adaptive strategy transfer protocol,explicitly balancing system-wide efficiency(measured by network throughput)with priority vehicle rights protection(quantified via time-sensitive utility functions).The approach innovatively combines(1)a multi-vehicle dynamic routing model with quantifiable preference weights,and(2)a distributed Nash equilibrium solver updated using replicator sub-dynamic models.The framework was evaluated on an urban road network containing 25 intersections with mixed priority ratios(10%–30%of vehicles with priority access demand),and the framework showed consistent benefits on four benchmarks(Social routing algorithm,Shortest path algorithm,The comprehensive path optimisation model,The emergency vehicle timing collaborative evolution path optimization method)showed consistent benefits.Results showthat across different traffic demand configurations,the proposed method reduces the average vehicle traveling time by at least 365 s,increases the road network throughput by 48.61%,and effectively balances the road loads.This approach successfully meets the diverse traffic demands of various vehicle types while optimizing road resource allocations.The proposed coordination paradigm advances theoretical foundations for fairness-aware traffic optimization while offering implementable strategies for next-generation cooperative vehicle-road systems,particularly in smart city deployments requiring mixed-priority mobility guarantees.展开更多
In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a s...In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a star point positioning algorithm based on the capsule network whose input and output are both vectors. First, a PCTL (Probability-Coordinate Transformation Layer) is designed to represent the mapping relationship between the probability output of the capsule network and the star point sub-pixel coordinates. Then, Coordconv Layer is introduced to implement explicit encoding of space information and the probability is used as the centroid weight to achieve the conversion between probability and star point sub-pixel coordinates, which improves the network’s ability to perceive star point positions. Finally, based on the dynamic imaging principle of star sensors and the characteristics of near-space environment, a star map dataset for algorithm training and testing is constructed. The simulation results show that the proposed algorithm reduces the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) of the star point positioning by 36.1% and 41.7% respectively compared with the traditional algorithm. The research results can provide important theory and technical support for the scheme design, index demonstration, test and evaluation of large dynamic star sensors in near space.展开更多
Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a netwo...Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.展开更多
In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stabili...In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stability,data transmission reliability,and overall performance.To effectively address this issue and significantly improve intrusion detection speed,accuracy,and resistance to malicious attacks,this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation(TIDM-DTE).This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust,communication trust,and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption changes.By dynamically predicting node trust values using the grey Markov model,the model accurately and sensitively reflects changes in node trust levels during attacks.Additionally,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)data noise monitoring technology is employed to quickly identify attacked nodes,while a trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate.Simulation results demonstrate that TIDM-DTE achieves high detection rates,fast detection speed,and low False Alarm Rate when identifying various network attacks,including selective forwarding attacks,Sybil attacks,switch attacks,and black hole attacks.TIDM-DTE significantly enhances network security,ensures secure and reliable data transmission,moderately improves network energy efficiency,reduces unnecessary energy consumption,and provides strong support for the stable operation of WSNs.Meanwhile,the research findings offer new ideas and methods for WSN security protection,possessing important theoretical significance and practical application value.展开更多
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ...Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.展开更多
Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most impor...Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most important parts impacting the whole network performance.In this paper,we propose a dis-tributed TDMA-based MAC protocol called Dynamic Self Organizing TDMA(DSO-TDMA)for wide area ad hoc networks.DSO-TDMA includes three main features:(1)In a distributed way,nodes in the network select transmitting slots according to the congestion situation of the local air interface.(2)In a selforganization way,nodes dynamically adjust the resource occupancy ratio according to the queue length of neighbouring nodes within two-hop range.(3)In a piggyback way,the control information is transmitted together with the payload to reduce the overhead.We design the whole mechanisms,implement them in NS-3 and evaluate the performance of DSO-TDMA compared with another dynamic TDMA MAC protocol,EHR-TDMA.Results show that the end-to-end throughput of DSO-TDMA is at most 51.4%higher than that of EHR-TDMA,and the average access delay of DSO-TDMA is at most 66.05%lower than that of EHR-TDMA.展开更多
Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transpo...Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transport is indispensable for the establishment of HBs.Here,the accelerated proton transport modulates the dynamic hydrogen bonding network of a Zn(BF4)2/EMIMBF4impregnated polyacrylamide/poly(vinyl alcohol)/xanthan gum dual network eutectic gel electrolyte(PPX-ILZSE)for lowtemperature AZMBs.The PPX-ILZSE forms more HBs,shorter HBs lifetimes,higher tetrahedral entropy,and faster desolvation processes,as demonstrated by experimental and theoretical calculations.This enhanced dynamic proton transport promotes rapid cycling of HBs formation-failure,and for polyaniline cathode(PANI)abundant redox sites of proton,confers excellent low temperature electrochemical performance to the Zn//PANI full cell.Specific capacities for 1000 and 5000 cycles at 1 and 5 A g^(-1)were149.8 and 128.4 m A h g^(-1)at room temperature,respectively.Furthermore,specific capacities of 131.1 mA hg^(-1)(92.4%capacity retention)and 0.0066%capacity decay per lap were achieved for 3000and 3500 laps at-30 and 40℃,respectively,at 0.5 A g^(-1).Furthermore,in-situ protective layer of ZnOHF nano-arrays on the Zn anode surface to eliminate dendrite growth and accelerate Zn-ions adsorption and charge transfer.展开更多
As lithium-ion batteries become increasingly prevalent in electric scooters,vehicles,mobile devices,and energy storage systems,accurate estimation of remaining battery capacity is crucial for optimizing system perform...As lithium-ion batteries become increasingly prevalent in electric scooters,vehicles,mobile devices,and energy storage systems,accurate estimation of remaining battery capacity is crucial for optimizing system performance and reliability.Unlike traditional methods that rely on static alternating internal resistance(SAIR)measurements in an open-circuit state,this study presents a real-time state of charge(SOC)estimation method combining dynamic alternating internal resistance(DAIR)with artificial neural networks(ANN).The system simultaneously measures electrochemical impedance various frequencies,discharge C-rate,and battery surface temperature during the∣Z∣atdischarge process,using these parameters for ANN training.The ANN,leveraging its superior nonlinear system modeling capabilities,effectively captures the complex nonlinear relationships between AC impedance and SOC through iterative training.Compared to other machine learning approaches,the proposed ANN features a simpler architecture and lower computational overhead,making it more suitable for integration into battery management system(BMS)microcontrollers.In tests conducted with Samsung batteries using lithium cobalt oxide cathode material,the method achieved an overall average error of merely 0.42%in self-validation,with mean absolute errors(MAE)for individual SOCs not exceeding 1%.Secondary validation demonstrated an overall average error of 1.24%,with MAE for individual SOCs below 2.5%.This integrated DAIR-ANN approach not only provides enhanced estimation accuracy but also simplifies computational requirements,offering a more effective solution for battery management in practical applications.展开更多
Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitor...Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.展开更多
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
文摘The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.
基金supported by the National Nature Science Foundation of China(71771201,72531009,71973001)the USTC Research Funds of the Double First-Class Initiative(FSSF-A-240202).
文摘Social interaction with peer pressure is widely studied in social network analysis.Game theory can be utilized to model dynamic social interaction,and one class of game network models assumes that people’s decision payoff functions hinge on individual covariates and the choices of their friends.However,peer pressure would be misidentified and induce a non-negligible bias when incomplete covariates are involved in the game model.For this reason,we develop a generalized constant peer effects model based on homogeneity structure in dynamic social networks.The new model can effectively avoid bias through homogeneity pursuit and can be applied to a wider range of scenarios.To estimate peer pressure in the model,we first present two algorithms based on the initialize expand merge method and the polynomial-time twostage method to estimate homogeneity parameters.Then we apply the nested pseudo-likelihood method and obtain consistent estimators of peer pressure.Simulation evaluations show that our proposed methodology can achieve desirable and effective results in terms of the community misclassification rate and parameter estimation error.We also illustrate the advantages of our model in the empirical analysis when compared with a benchmark model.
基金This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award under Grant DE200101128.
文摘This paper deals with the co-design problem of event-triggered communication scheduling and platooning control over vehicular ad-hoc networks(VANETs)subject to finite communication resource.First,a unified model is presented to describe the coordinated platoon behavior of leader-follower vehicles in the simultaneous presence of unknown external disturbances and an unknown leader control input.Under such a platoon model,the central aim is to achieve robust platoon formation tracking with desired inter-vehicle spacing and same velocities and accelerations guided by the leader,while attaining improved communication efficiency.Toward this aim,a novel bandwidth-aware dynamic event-triggered scheduling mechanism is developed.One salient feature of the scheduling mechanism is that the threshold parameter in the triggering law is dynamically adjusted over time based on both vehicular state variations and bandwidth status.Then,a sufficient condition for platoon control system stability and performance analysis as well as a co-design criterion of the admissible event-triggered platooning control law and the desired scheduling mechanism are derived.Finally,simulation results are provided to substantiate the effectiveness and merits of the proposed co-design approach for guaranteeing a trade-off between robust platooning control performance and communication efficiency.
基金supported in part by the National Natural Science Foundation of China(52175528)in part by the National Key Research and Development Program of China,the Chinese Ministry of Science and Technology(2018YFB1703200).
文摘Milling force is key to the understanding of cutting mechanism and the control of machining process.Traditional milling force models have limited prediction accuracy due to their simplified conditions and incomplete knowledge contained for model construction.On the other hand,due to the lack of guidance from physics,the data-driven models lack interpretability,making them challenging to generalize to practical applications.To meet these difficulties,a deep network model guided by milling dynamics is proposed in this study to predict the instantaneous milling force and spindle vibration under varying cutting conditions.The model uses a milling dynamics model to generate data sets to pre-train the deep network and then integrates the experimental data for fine-tuning to improve the model’s generalization and accuracy.Additionally,the vibration equation is incorporated into the loss function as the physical constraint,enhancing the model’s interpretability.A milling experiment is conducted to validate the effectiveness of the proposed model,and the results indicate that the physics incorporated could improve the network learning capability and interpretability.The predicted results are in good agreement with the measured values,with an average error as low as 2.6705%.The prediction accuracy is increased by 24.4367%compared to the pure data-driven model.
基金supported by the National Natural Science Foundations of China(Nos.12272411 and 42007259)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,the China University of Mining&Technology(No.SKLGDUEK2207)the Department of Science and Technology of Shaanxi Province(Nos.2022KXJ-107 and 2022JC-LHJJ-16).
文摘Underground engineering in extreme environments necessitates understanding rock mechanical behavior under coupled high-temperature and dynamic loading conditions.This study presents an innovative multi-scale cross-platform PFC-FDEM coupling methodology that bridges microscopic thermal damage mechanisms with macroscopic dynamic fracture responses.The breakthrough coupling framework introduces:(1)bidirectional information transfer protocols enabling seamless integration between PFC’s particle-scale thermal damage characterization and FDEM’s continuum-scale fracture propagation,(2)multi-physics mapping algorithms that preserve crack network geometric invariants during scale transitions,and(3)cross-platform cohesive zone implementations for accurate SHTB dynamic loading simulation.The coupled approach reveals distinct three-stage crack evolution characteristics with temperature-dependent density following an exponential model.High-temperature exposure significantly reduces dynamic strength ratio(60%at 800℃)and diminishes strain-rate sensitivity,with dynamic increase factor decreasing from 1.0 to 2.2(25℃)to 1.0-1.3(800℃).Critically,the coupling methodology captures fundamental energy redistribution mechanisms:thermal crack networks alter elastic energy proportion from 75%to 35%while increasing fracture energy from 5%to 30%.Numerical predictions demonstrate excellent experimental agreement(±8%peak stress-strain errors),validating the PFC-FDEM coupling accuracy.This integrated framework provides essential computational tools for predicting complex thermal-mechanical rock behavior in underground engineering applications.
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFA0701601in part by the National Natural Science Foundation of China under Grant 61922049 and Grant 61941104in part by the Tsinghua University-China Mobile Communications Group Company Ltd.,Joint Institute.
文摘The integration of satellite communication network and cellular network has a great potential to enable ubiquitous connectivity in future communication networks.Among numerous related application scenarios,the direct connection of mobile phone to satellite has attracted increasing attention.However,the spectrum scarcity in the sub-6 GHz band and low spectrum utilization prevents its popularity.To address these problem,in this paper,we propose a dynamic spectrum sharing method for satellite network and cellular network based on beam-hopping.Specifically,we first develop a centralized dynamic spectrum sharing architecture based on beam-hopping,and propose a delay pre-compensation scheme for beam hopping pattern.Then,an optimization problem is formulated to maximize the overall capacity of the integrated network,with considering the service requirements,the fairness between beam positions and mixed co-channel interference,etc.To solve this problem,a polling-based dynamic resource allocation algorithm is proposed.Simulation results confirm that the proposed algorithm can effectively reduce the serious cochannel interference between different beams or different systems,and improve the spectrum utilization rate as well as system capacity.
基金Project supported by the National Natural Science Foundation of China(Grant No.12072340)the Chinese Scholarship Council and the Australia Research Council through a linkage project fund。
文摘The successful application of perimeter control of urban traffic system strongly depends on the macroscopic fundamental diagram of the targeted region.Despite intensive studies on the partitioning of urban road networks,the dynamic partitioning of urban regions reflecting the propagation of congestion remains an open question.This paper proposes to partition the network into homogeneous sub-regions based on random walk algorithm.Starting from selected random walkers,the road network is partitioned from the early morning when congestion emerges.A modified Akaike information criterion is defined to find the optimal number of partitions.Region boundary adjustment algorithms are adopted to optimize the partitioning results to further ensure the correlation of partitions.The traffic data of Melbourne city are used to verify the effectiveness of the proposed partitioning method.
文摘The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional experimental methods struggle to capture stress distributions due to technical limitations,while numerical approaches are often computationally intensive.This study presents a hybrid framework combining analytical modeling and machine learning(ML)to overcome these challenges.An analytical model is used to simulate transient swelling behaviors and stress distributions,and is confirmed to be viable through the comparison of the obtained simulation results with the existing experimental swelling data.The predictions from this model are used to train neural networks,including a two-step augmented architecture.The initial neural network predicts hydration values,which are then fed into a second network to predict stress distributions,effectively capturing nonlinear interdependencies.This approach achieves mean absolute errors(MAEs)as low as 0.031,with average errors of 1.9%for the radial stress and 2.55%for the hoop stress.This framework significantly enhances the predictive accuracy and reduces the computational complexity,offering actionable insights for optimizing hydrogel-based systems.
基金supported by the Fund from the Science and Technology Department of Henan Province,China(Grant Nos.222102210233 and 232102210064)the National Natural Science Foundation of China(Grant Nos.62373169 and 72474086)+5 种基金the Young and Midcareer Academic Leader of Jiangsu Province,China(Grant No.Qinglan Project in 2024)the National Statistical Science Research Project(Grant No.2022LZ03)Shaanxi Provincial Soft Science Project(Grant No.2022KRM111)Shaanxi Provincial Social Science Foundation(Grant No.2022R016)the Special Project for Philosophical and Social Sciences Research in Shaanxi Province,China(Grant No.2024QN018)the Fund from the Henan Office of Philosophy and Social Science(Grant No.2023CJJ112).
文摘Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains.
基金supported in part by the Major Program of the National Natural Science Foundation of China(62495021 and 62495020).
文摘The rapid growth of low-Earth-orbit satellites has injected new vitality into future service provisioning.However,given the inherent volatility of network traffic,ensuring differentiated quality of service in highly dynamic networks remains a significant challenge.In this paper,we propose an online learning-based resource scheduling scheme for satellite-terrestrial integrated networks(STINs)aimed at providing on-demand services with minimal resource utilization.Specifically,we focus on:①accurately characterizing the STIN channel,②predicting resource demand with uncertainty guarantees,and③implementing mixed timescale resource scheduling.For the STIN channel,we adopt the 3rd Generation Partnership Project channel and antenna models for non-terrestrial networks.We employ a one-dimensional convolution and attention-assisted long short-term memory architecture for average demand prediction,while introducing conformal prediction to mitigate uncertainties arising from burst traffic.Additionally,we develop a dual-timescale optimization framework that includes resource reservation on a larger timescale and resource adjustment on a smaller timescale.We also designed an online resource scheduling algorithm based on online convex optimization to guarantee long-term performance with limited knowledge of time-varying network information.Based on the Network Simulator 3 implementation of the STIN channel under our high-fidelity satellite Internet simulation platform,numerical results using a real-world dataset demonstrate the accuracy and efficiency of the prediction algorithms and online resource scheduling scheme.
基金funded by the National Key Research and Development Program Project 2022YFB4300404.
文摘The real-time path optimization for heterogeneous vehicle fleets in large-scale road networks presents significant challenges due to conflicting traffic demands and imbalanced resource allocation.While existing vehicleto-infrastructure coordination frameworks partially address congestion mitigation,they often neglect priority-aware optimization and exhibit algorithmic bias toward dominant vehicle classes—critical limitations in mixed-priority scenarios involving emergency vehicles.To bridge this gap,this study proposes a preference game-theoretic coordination framework with adaptive strategy transfer protocol,explicitly balancing system-wide efficiency(measured by network throughput)with priority vehicle rights protection(quantified via time-sensitive utility functions).The approach innovatively combines(1)a multi-vehicle dynamic routing model with quantifiable preference weights,and(2)a distributed Nash equilibrium solver updated using replicator sub-dynamic models.The framework was evaluated on an urban road network containing 25 intersections with mixed priority ratios(10%–30%of vehicles with priority access demand),and the framework showed consistent benefits on four benchmarks(Social routing algorithm,Shortest path algorithm,The comprehensive path optimisation model,The emergency vehicle timing collaborative evolution path optimization method)showed consistent benefits.Results showthat across different traffic demand configurations,the proposed method reduces the average vehicle traveling time by at least 365 s,increases the road network throughput by 48.61%,and effectively balances the road loads.This approach successfully meets the diverse traffic demands of various vehicle types while optimizing road resource allocations.The proposed coordination paradigm advances theoretical foundations for fairness-aware traffic optimization while offering implementable strategies for next-generation cooperative vehicle-road systems,particularly in smart city deployments requiring mixed-priority mobility guarantees.
文摘In order to solve the problem that the star point positioning accuracy of the star sensor in near space is decreased due to atmospheric background stray light and rapid maneuvering of platform, this paper proposes a star point positioning algorithm based on the capsule network whose input and output are both vectors. First, a PCTL (Probability-Coordinate Transformation Layer) is designed to represent the mapping relationship between the probability output of the capsule network and the star point sub-pixel coordinates. Then, Coordconv Layer is introduced to implement explicit encoding of space information and the probability is used as the centroid weight to achieve the conversion between probability and star point sub-pixel coordinates, which improves the network’s ability to perceive star point positions. Finally, based on the dynamic imaging principle of star sensors and the characteristics of near-space environment, a star map dataset for algorithm training and testing is constructed. The simulation results show that the proposed algorithm reduces the MAE (Mean Absolute Error) and RMSE (Root Mean Square Error) of the star point positioning by 36.1% and 41.7% respectively compared with the traditional algorithm. The research results can provide important theory and technical support for the scheme design, index demonstration, test and evaluation of large dynamic star sensors in near space.
基金National Natural Science Foundation of China (61773044,62073009)National key Laboratory of Science and Technology on Reliability and Environmental Engineering(WDZC2019601A301)。
文摘Delay aware routing is now widely used to provide efficient network transmission. However, for newly developing or developed mobile communication networks(MCN), only limited delay data can be obtained. In such a network, the delay is with epistemic uncertainty, which makes the traditional routing scheme based on deterministic theory or probability theory not applicable. Motivated by this problem, the MCN with epistemic uncertainty is first summarized as a dynamic uncertain network based on uncertainty theory, which is widely applied to model epistemic uncertainties. Then by modeling the uncertain end-toend delay, a new delay bounded routing scheme is proposed to find the path with the maximum belief degree that satisfies the delay threshold for the dynamic uncertain network. Finally, a lowEarth-orbit satellite communication network(LEO-SCN) is used as a case to verify the effectiveness of our routing scheme. It is first modeled as a dynamic uncertain network, and then the delay bounded paths with the maximum belief degree are computed and compared under different delay thresholds.
基金supported by Gansu Provincial Higher Education Teachers’Innovation Fund under Grant 2025A-124Key Research Project of Gansu University of Political Science and Law under Grant No.GZF2022XZD08Soft Science Special Project of Gansu Basic Research Plan under Grant No.22JR11RA106.
文摘In the complex environment of Wireless Sensor Networks(WSNs),various malicious attacks have emerged,among which internal attacks pose particularly severe security risks.These attacks seriously threaten network stability,data transmission reliability,and overall performance.To effectively address this issue and significantly improve intrusion detection speed,accuracy,and resistance to malicious attacks,this research designs a Three-level Intrusion Detection Model based on Dynamic Trust Evaluation(TIDM-DTE).This study conducts a detailed analysis of how different attack types impact node trust and establishes node models for data trust,communication trust,and energy consumption trust by focusing on characteristics such as continuous packet loss and energy consumption changes.By dynamically predicting node trust values using the grey Markov model,the model accurately and sensitively reflects changes in node trust levels during attacks.Additionally,DBSCAN(Density-Based Spatial Clustering of Applications with Noise)data noise monitoring technology is employed to quickly identify attacked nodes,while a trust recovery mechanism restores the trust of temporarily faulty nodes to reduce False Alarm Rate.Simulation results demonstrate that TIDM-DTE achieves high detection rates,fast detection speed,and low False Alarm Rate when identifying various network attacks,including selective forwarding attacks,Sybil attacks,switch attacks,and black hole attacks.TIDM-DTE significantly enhances network security,ensures secure and reliable data transmission,moderately improves network energy efficiency,reduces unnecessary energy consumption,and provides strong support for the stable operation of WSNs.Meanwhile,the research findings offer new ideas and methods for WSN security protection,possessing important theoretical significance and practical application value.
基金supported by the Natural Science Foundation of China(No.U22A2099)the Innovation Project of Guangxi Graduate Education(YCBZ2023130).
文摘Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL.
文摘Research on wide area ad hoc networks is of great significance due to its application prospect in long-range networks such as aeronautical and maritime networks,etc.The design of MAC protocols is one of the most important parts impacting the whole network performance.In this paper,we propose a dis-tributed TDMA-based MAC protocol called Dynamic Self Organizing TDMA(DSO-TDMA)for wide area ad hoc networks.DSO-TDMA includes three main features:(1)In a distributed way,nodes in the network select transmitting slots according to the congestion situation of the local air interface.(2)In a selforganization way,nodes dynamically adjust the resource occupancy ratio according to the queue length of neighbouring nodes within two-hop range.(3)In a piggyback way,the control information is transmitted together with the payload to reduce the overhead.We design the whole mechanisms,implement them in NS-3 and evaluate the performance of DSO-TDMA compared with another dynamic TDMA MAC protocol,EHR-TDMA.Results show that the end-to-end throughput of DSO-TDMA is at most 51.4%higher than that of EHR-TDMA,and the average access delay of DSO-TDMA is at most 66.05%lower than that of EHR-TDMA.
基金supported by the National Natural Science Foundation of China(NSFC 52432002,52372041,and 52302087)China Postdoctoral Science Foundation(Grant No.2023 M740895)+1 种基金Heilongjiang Touyan Team Programthe Fundamental Research Funds for the Central Universities(Grant No.HIT.OCEF.2021003 and HIT.DZJJ.2025002)。
文摘Aqueous Zn-metal batteries(AZMBs)performance is hampered by freezing water at low temperatures,which hampers their multi-scenario application.Hydrogen bonds(HBs)play a pivotal role in water freezing,and proton transport is indispensable for the establishment of HBs.Here,the accelerated proton transport modulates the dynamic hydrogen bonding network of a Zn(BF4)2/EMIMBF4impregnated polyacrylamide/poly(vinyl alcohol)/xanthan gum dual network eutectic gel electrolyte(PPX-ILZSE)for lowtemperature AZMBs.The PPX-ILZSE forms more HBs,shorter HBs lifetimes,higher tetrahedral entropy,and faster desolvation processes,as demonstrated by experimental and theoretical calculations.This enhanced dynamic proton transport promotes rapid cycling of HBs formation-failure,and for polyaniline cathode(PANI)abundant redox sites of proton,confers excellent low temperature electrochemical performance to the Zn//PANI full cell.Specific capacities for 1000 and 5000 cycles at 1 and 5 A g^(-1)were149.8 and 128.4 m A h g^(-1)at room temperature,respectively.Furthermore,specific capacities of 131.1 mA hg^(-1)(92.4%capacity retention)and 0.0066%capacity decay per lap were achieved for 3000and 3500 laps at-30 and 40℃,respectively,at 0.5 A g^(-1).Furthermore,in-situ protective layer of ZnOHF nano-arrays on the Zn anode surface to eliminate dendrite growth and accelerate Zn-ions adsorption and charge transfer.
文摘As lithium-ion batteries become increasingly prevalent in electric scooters,vehicles,mobile devices,and energy storage systems,accurate estimation of remaining battery capacity is crucial for optimizing system performance and reliability.Unlike traditional methods that rely on static alternating internal resistance(SAIR)measurements in an open-circuit state,this study presents a real-time state of charge(SOC)estimation method combining dynamic alternating internal resistance(DAIR)with artificial neural networks(ANN).The system simultaneously measures electrochemical impedance various frequencies,discharge C-rate,and battery surface temperature during the∣Z∣atdischarge process,using these parameters for ANN training.The ANN,leveraging its superior nonlinear system modeling capabilities,effectively captures the complex nonlinear relationships between AC impedance and SOC through iterative training.Compared to other machine learning approaches,the proposed ANN features a simpler architecture and lower computational overhead,making it more suitable for integration into battery management system(BMS)microcontrollers.In tests conducted with Samsung batteries using lithium cobalt oxide cathode material,the method achieved an overall average error of merely 0.42%in self-validation,with mean absolute errors(MAE)for individual SOCs not exceeding 1%.Secondary validation demonstrated an overall average error of 1.24%,with MAE for individual SOCs below 2.5%.This integrated DAIR-ANN approach not only provides enhanced estimation accuracy but also simplifies computational requirements,offering a more effective solution for battery management in practical applications.
文摘Reliable and efficient communication is essential for Unmanned Aerial Vehicle(UAV)networks,especially in dynamic and resource-constrained environments such as disaster management,surveillance,and environmental monitoring.Frequent topology changes,high mobility,and limited energy availability pose significant challenges to maintaining stable and high-performance routing.Traditional routing protocols,such as Ad hoc On-Demand Distance Vector(AODV),Load-Balanced Optimized Predictive Ad hoc Routing(LB-OPAR),and Destination-Sequenced Distance Vector(DSDV),often experience performance degradation under such conditions.To address these limitations,this study evaluates the effectiveness of Dynamic Adaptive Routing(DAR),a protocol designed to adapt routing decisions in real time based on network dynamics and resource constraints.The research utilizes the Network Simulator 3(NS-3)platform to conduct controlled simulations,measuring key performance indicators such as latency,Packet Delivery Ratio(PDR),energy consumption,and throughput.Comparative analysis reveals that DAR consistently outperforms conventional protocols,achieving a 20%-30% reduction in latency,a 25% decrease in energy consumption,and marked improvements in throughput and PDR.These results highlight DAR’s ability to maintain high communication reliability while optimizing resource usage in challenging operational scenarios.By providing empirical evidence of DAR’s advantages in highly dynamic UAV network environments,this study contributes to advancing adaptive routing strategies.The findings not only validate DAR’s robustness and scalability but also lay the groundwork for integrating artificial intelligence-driven decision-making and real-world UAV deployment.Future work will explore cross-layer optimization,multi-UAV coordination,and experimental validation in field trials,aiming to further enhance communication resilience and energy efficiency in next-generation aerial networks.