期刊文献+
共找到7,048篇文章
< 1 2 250 >
每页显示 20 50 100
Bidirectional rotating direct-current triboelectric nanogenerator with self-adaptive mechanical switching for harvesting reciprocating motion
1
作者 Donghan Lee Joonmin Chae +6 位作者 Sumin Cho Jong Woo Kim Awais Ahmad Mohammad Rezaul Karim Moonwoo La Sung Jea Park Dongwhi Choi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期324-335,共12页
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device... Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices. 展开更多
关键词 direct-current triboelectric nanogenerator mechanical rectification self-adaptive mechanical design harvesting reciprocation motion
在线阅读 下载PDF
Analyses of nonequilibrium transport in atmospheric-pressure direct-current argon discharge under different modes
2
作者 Ziming ZHANG Chuan FANG +2 位作者 Yaoting WANG Lanyue LUO Heping LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第11期107-126,共20页
The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications ... The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow,arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current(DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath(P_c) was used as a key parameter for judging different discharge modes, and the range of(0.28–1.2) × 10^(12) W m^(-3) was determined as a critical window of P_c corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature. 展开更多
关键词 atmospheric-pressure plasma direct-current gas discharge discharge mode mode transition power density in cathode sheath
在线阅读 下载PDF
Demand Response in power off-grid microgrids in Nigeria:a game theory approach
3
作者 Racine Diatta Rodica Loisel Lionel Richefort 《Global Energy Interconnection》 2025年第4期581-597,共17页
Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexib... Most developing countries continue to face challenges in accessing sustainable energy.This study investigates a solar panel and battery-powered system for an urban off-grid microgrid in Nigeria,where demand-sideflexibility and strategic interactions between households and utilities can optimize system sizing.A nonlinear programming model is built using bilevel problem formulation that incorporates both the households’willingness to reduce their energy consumption and the utility’s agreement to provide price rebates.The results show that,for an energy community of 10 households with annual energy demand of 7.8 MWh,an oversized solar-storage system is required(12 kWp of photovoltaic solar panels and 26 kWh of battery storage).The calculated average cost of 0.31€/kWh is three times higher than the current tariff,making it unaffordable for most Nigerian households.To address this,the utility company could implement Demand Response programs with direct load control that delay the use of certain appliances,such as fans,irons and air conditioners.If these measures reduce total demand by 5%,both the required system size and overall costs could decrease significantly,by approximately one-third.This adjustment leads to a reduced tariffof 0.20€/kWh.When Demand Response is imple-mented through negotiation between the utility and households,the amount of load-shaving achieved is lower.This is because house-holds experience discomfort from curtailment and are generally less willing to provideflexibility.However,negotiation allows for greaterflexibility than direct control,due to dynamic interactions and more active consumer participation in the energy transition.Nonetheless,tariffs remain higher than current market prices.Off-grid contracts could become competitive iffinancial support is pro-vided,such as low-interest loans and capital grants covering up to 75%of the upfront cost. 展开更多
关键词 Game theory Power demandflexibility microgrid
在线阅读 下载PDF
Generalized shipboard microgrid power flow incorporating hierarchical control
4
作者 Stephen Mossing Oscar Amestegui +6 位作者 Michael Jonas Fei Feng Lizhi Wang Qing Shen Sina Zarrabian Ziqian Liu Peng Zhang 《iEnergy》 2025年第3期165-173,共9页
Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the tradition... Modern shipboard microgrids(SMGs)incorporating distributed energy resources(DERs)enhance energy resilience and reduce carbon emissions.However,the hierarchical control schemes of DERs bring challenges to the traditional power flow methods.This paper devises a generalized three-phase power flow approach for SMGs that integrate hierarchically controlled DERs.The main contributions include:(1)a droop-controlled three-phase Newton power flow algorithm that automatically incorporates the droop characteristics of DERs;(2)a secondary-controlled three-phase power flow method for power sharing and voltage regulation;and(3)modified Jacobian matrices to incorporate various hierarchical control modes.Numerical results demonstrate the effectiveness of the devised approach in both balanced and unbalanced three-phase hierarchically controlled SMG systems with arbitrary config-urations. 展开更多
关键词 Shipboard microgrid hierarchical control three-phase power flow
在线阅读 下载PDF
Optimization of Microgrid Operation Control Strategy under New Energy Integration
5
作者 Miao Fei 《Journal of Electronic Research and Application》 2025年第4期242-247,共6页
With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of r... With the direct rise of the social demand for renewable energy,as a new type of energy supply model in the new era,the operation control and optimization of microgrid play an important role in solving the problem of resource sharing.Microgrid can realize the flexibility of distributed power supply and the application of high efficiency,solving the problem of a large number and variety of forms of the power grid.Based on this,this paper will discuss the operation control strategy of microgrid based on a new energy grid connection,and provide constructive ideas for high-quality operation of microgrid. 展开更多
关键词 Power system New energy grid-connected microgrid Renewable energy SUSTAINABLE
在线阅读 下载PDF
Cooperative Game Theory-Based Optimal Scheduling Strategy for Microgrid Alliances
6
作者 Zhiyuan Zhang Meng Shuai +5 位作者 Bin Wang Ying He Fan Yang Liyan Ren Yuyuan Zhang Ziren Wang 《Energy Engineering》 2025年第10期4169-4194,共26页
With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization p... With the rapid development of renewable energy,the Microgrid Coalition(MGC)has become an important approach to improving energy utilization efficiency and economic performance.To address the operational optimization problem inmulti-microgrid cooperation,a cooperative game strategy based on the Nash bargainingmodel is proposed,aiming to enable collaboration among microgrids to maximize overall benefits while considering energy trading and cost optimization.First,each microgrid is regarded as a game participant,and a multi-microgrid cooperative game model based on Nash bargaining theory is constructed,targeting the minimization of total operational cost under constraints such as power balance and energy storage limits.Second,the Nash bargaining solution is introduced as the benefit allocation scheme to ensure individual rationality and coalition stability.Finally,theAlternating Direction Method of Multipliers(ADMM)is employed to decompose the centralized optimization problem into distributed subproblems for iterative solution,thereby reducing communication burden and protecting privacy.Case studies reveal that the operational costs of the threemicrogrids are reduced by 26.28%,19.00%,and 17.19%,respectively,and the overall renewable energy consumption rate is improved by approximately 66.11%. 展开更多
关键词 microgrid coalition cooperative game Nash bargaining ADMM algorithm
在线阅读 下载PDF
Research on the coordinated optimization of energy storage and renewable energy in off-grid microgrids under new electric power systems
7
作者 Zhuoran Song Mingli Zhang +2 位作者 Yuanying Chi Jialin Li Yi Zheng 《Global Energy Interconnection》 2025年第2期213-224,共12页
The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage... The supply of electricity to remote regions is a significant challenge owing to the pivotal transition in the global energy landscape.To address this issue,an off-grid microgrid solution integrated with energy storage systems is proposed in this study.Off-grid microgrids are self-sufficient electrical networks that are capable of effectively resolving electricity access problems in remote areas by providing stable and reliable power to local residents.A comprehensive review of the design,control strategies,energy management,and optimization of off-grid microgrids based on domestic and international research is presented in this study.It also explores the critical role of energy stor-age systems in enhancing microgrid stability and economic efficiency.Additionally,the capacity configurations of energy storage systems within off-grid networks are analyzed.Energy storage systems not only mitigate the intermittency and volatility of renewable energy gen-eration but also supply power support during peak demand periods,thereby improving grid stability and reliability.By comparing different energy storage technologies,such as lithium-ion batteries,pumped hydro storage,and compressed air energy storage,the optimal energy storage capacity configurations tailored to various application scenarios are proposed in this study.Finally,using a typical micro-grid as a case study,an empirical analysis of off-grid microgrids and energy storage integration has been conducted.The optimal con-figuration of energy storage systems is determined,and the impact of wind and solar power integration under various scenarios on grid balance is explored.It has been found that a rational configuration of energy storage systems can significantly enhance the utilization rate of renewable energy,reduce system operating costs,and strengthen grid resilience under extreme conditions.This study provides essential theoretical support and practical guidance for the design and implementation of off-grid microgrids in remote areas. 展开更多
关键词 Off-grid microgrid Energy storage system Optimal configuration Renewable energy
在线阅读 下载PDF
Synchronization Characterization of DC Microgrid Converter Output Voltage and Improved Adaptive Synchronization Control Methods
8
作者 Wei Chen Xin Gao +2 位作者 Zhanhong Wei Xusheng Yang Zhao Li 《Energy Engineering》 2025年第2期805-821,共17页
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta... This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance. 展开更多
关键词 DC microgrid BIFURCATION small-world network voltage synchronization improved adaptive control
在线阅读 下载PDF
Comparative analysis of GA and PSO algorithms for optimal cost management in on-grid microgrid energy systems with PV-battery integration
9
作者 Mouna EL-Qasery Ahmed Abbou +2 位作者 Mohamed Laamim Lahoucine Id-Khajine Abdelilah Rochd 《Global Energy Interconnection》 2025年第4期572-580,共9页
The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is crit... The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms. 展开更多
关键词 microgrid EMS GA algorithm PSO algorithm Cost optimization Economic dispatch
在线阅读 下载PDF
Optimizing Microgrid Energy Management via DE-HHO Hybrid Metaheuristics
10
作者 Jingrui Liu Zhiwen Hou +1 位作者 Boyu Wang Tianxiang Yin 《Computers, Materials & Continua》 2025年第9期4729-4754,共26页
In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to im... In response to the increasing global energy demand and environmental pollution,microgrids have emerged as an innovative solution by integrating distributed energy resources(DERs),energy storage systems,and loads to improve energy efficiency and reliability.This study proposes a novel hybrid optimization algorithm,DE-HHO,combining differential evolution(DE)and Harris Hawks optimization(HHO)to address microgrid scheduling issues.The proposed method adopts a multi-objective optimization framework that simultaneously minimizes operational costs and environmental impacts.The DE-HHO algorithm demonstrates significant advantages in convergence speed and global search capability through the analysis of wind,solar,micro-gas turbine,and battery models.Comprehensive simulation tests show that DE-HHO converges rapidly within 10 iterations and achieves a 4.5%reduction in total cost compared to PSO and a 5.4%reduction compared to HHO.Specifically,DE-HHO attains an optimal total cost of$20,221.37,outperforming PSO($21,184.45)and HHO($21,372.24).The maximum cost obtained by DE-HHO is$23,420.55,with a mean of$21,615.77,indicating stability and cost control capabilities.These results highlight the effectiveness of DE-HHO in reducing operational costs and enhancing system stability for efficient and sustainable microgrid operation. 展开更多
关键词 microgrid optimization differential evolution Harris Hawks optimization multi-objective scheduling
在线阅读 下载PDF
Optimized control of grid-connected photovoltaic systems:Robust PI controller based on sparrow search algorithm for smart microgrid application
11
作者 Youssef Akarne Ahmed Essadki +2 位作者 Tamou Nasser Maha Annoukoubi Ssadik Charadi 《Global Energy Interconnection》 2025年第4期523-536,共14页
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi... The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems. 展开更多
关键词 Smart microgrid Photovoltaic system PI controller Sparrow search algorithm GRID-CONNECTED Metaheuristic optimization
在线阅读 下载PDF
Hash-based FDI attack-resilient distributed self-triggered secondary frequency control for islanded microgrids
12
作者 Xing Huang Yulin Chen +4 位作者 Donglian Qi Yunfeng Yan Shaohua Yang Ying Weng Xianbo Wang 《Global Energy Interconnection》 2025年第1期1-12,共12页
Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sam... Given the rapid development of advanced information systems,microgrids(MGs)suffer from more potential attacks that affect their operational performance.Conventional distributed secondary control with a small,fixed sampling time period inevitably causes the wasteful use of communication resources.This paper proposes a self-triggered secondary control scheme under perturbations from false data injection(FDI)attacks.We designed a linear clock for each DG to trigger its controller at aperiodic and intermittent instants.Sub-sequently,a hash-based defense mechanism(HDM)is designed for detecting and eliminating malicious data infiltrated in the MGs.With the aid of HDM,a self-triggered control scheme achieves the secondary control objectives even in the presence of FDI attacks.Rigorous theoretical analyses and simulation results indicate that the introduced secondary control scheme significantly reduces communication costs and enhances the resilience of MGs under FDI attacks. 展开更多
关键词 microgridS Distributed secondary control Self-triggered control Hash algorithms False data injection attack
在线阅读 下载PDF
Demand Forecasting of a Microgrid-Powered Electric Vehicle Charging Station Enabled by Emerging Technologies and Deep Recurrent Neural Networks
13
作者 Sahbi Boubaker Adel Mellit +3 位作者 Nejib Ghazouani Walid Meskine Mohamed Benghanem Habib Kraiem 《Computer Modeling in Engineering & Sciences》 2025年第5期2237-2259,共23页
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d... Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations. 展开更多
关键词 microgrid electric vehicles charging station forecasting deep recurrent neural networks energy management system
在线阅读 下载PDF
Signal processing and machine learning techniques in DC microgrids:a review
14
作者 Kanche Anjaiah Jonnalagadda Divya +1 位作者 Eluri N.V.D.V.Prasad Renu Sharma 《Global Energy Interconnection》 2025年第4期598-624,共27页
Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are explorin... Low-voltage direct current(DC)microgrids have recently emerged as a promising and viable alternative to traditional alternating cur-rent(AC)microgrids,offering numerous advantages.Consequently,researchers are exploring the potential of DC microgrids across var-ious configurations.However,despite the sustainability and accuracy offered by DC microgrids,they pose various challenges when integrated into modern power distribution systems.Among these challenges,fault diagnosis holds significant importance.Rapid fault detection in DC microgrids is essential to maintain stability and ensure an uninterrupted power supply to critical loads.A primary chal-lenge is the lack of standards and guidelines for the protection and safety of DC microgrids,including fault detection,location,and clear-ing procedures for both grid-connected and islanded modes.In response,this study presents a brief overview of various approaches for protecting DC microgrids. 展开更多
关键词 DC microgrids Mathematical approach Signal processing technique Machine learning technique Hybrid model DETECTION
在线阅读 下载PDF
Transformer-Enhanced Intelligent Microgrid Self-Healing:Integrating Large Language Models and Adaptive Optimization for Real-Time Fault Detection and Recovery
15
作者 Qiang Gao Lei Shen +9 位作者 Jiaming Shi Xinfa Gu Shanyun Gu Yuwei Ge Yang Xie Xiaoqiong Zhu Baoguo Zang Ming Zhang Muhammad Shahzad Nazir Jie Ji 《Energy Engineering》 2025年第7期2767-2800,共34页
The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying... The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multimodal data fusion.This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large languagemodels(LLMs)with adaptive optimization,achieving three key innovations:(1)Ahierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction,(2)Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds(Daubechies-4 basis,6-level decomposition),and(3)A grouping-stratified ant colony optimization algorithm featuring penalty-based pheromone updating.Validated on IEEE 33/100-node systems,our framework demonstrates 96.7%fault localization accuracy(23%improvement over STGCN)and 0.82-s protection delay,outperforming MILP-basedmethods by 37%in reconfiguration speed.The system maintains 98.4%self-healing success rate under cascading faults,resolving 89.3%of phase-toground faults within 500 ms through adaptive impedance matching.Field tests on 220 kV substations with 45%renewable penetration show 99.1%voltage stability(±5%deviation threshold)and 40%communication efficiency gains via compressed GOOSE message parsing.Comparative analysis reveals 12.6×faster convergence than conventional ACO in 1000-node networks,with 95.2%robustness against±25%load fluctuations.These advancements provide a scalable solution for real-time fault recovery in renewable-dense grids,reducing outage duration by 63%inmulti-agent simulations compared to centralized architectures. 展开更多
关键词 Large language model microgrid fault localization grid self-healing mechanism improved ant colony optimization algorithm
在线阅读 下载PDF
A Novel Control Strategy Based onπ-VSG for Inter-Face Converter in Hybrid Microgrid
16
作者 Kai Shi Dongyang Yang 《Energy Engineering》 2025年第2期471-492,共22页
The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development patte... The rapid development of new energy power generation technology and the transformation of power electronics in the core equipment of source-grid-load drives the power system towards the“double-high”development pattern of“high proportion of renewable energy”and“high proportion of power electronic equipment”.To enhance the transient performance of AC/DC hybrid microgrid(HMG)in the context of“double-high,”aπtype virtual synchronous generator(π-VSG)control strategy is applied to bidirectional interface converter(BIC)to address the issues of lacking inertia and poor disturbance immunity caused by the high penetration rate of power electronic equipment and new energy.Firstly,the virtual synchronous generator mechanical motion equations and virtual capacitance equations are used to introduce the virtual inertia control equations that consider the transient performance of HMG;based on the equations,theπ-type equivalent control model of the BIC is established.Next,the inertia power is actively transferred through the BIC according to the load fluctuation to compensate for the system’s inertia deficit.Secondly,theπ-VSG control utilizes small-signal analysis to investigate howthe fundamental parameters affect the overall stability of the HMG and incorporates power step response curves to reveal the relationship between the control’s virtual parameters and transient performance.Finally,the PSCAD/EMTDC simulation results show that theπ-VSG control effectively improves the immunity of AC frequency and DC voltage in the HMG system under the load fluctuation condition,increases the stability of the HMG system and satisfies the power-sharing control objective between the AC and DC subgrids. 展开更多
关键词 Hybrid AC/DC microgrid electromotive force of DC motor interface converter virtual synchronous generator control
在线阅读 下载PDF
Anomalous Direct-Current Josephson Effect in Semiconductor Nanowire Junctions
17
作者 伍滨和 封许昱 +2 位作者 王超 徐晓峰 王春瑞 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期118-122,共5页
We investigate the dc Josephson effect in one-dimensional junctions where a ring conductor is sandwiched between two semiconductor nanowires with proximity-induced superconductivity. Peculiar features of the Josephson... We investigate the dc Josephson effect in one-dimensional junctions where a ring conductor is sandwiched between two semiconductor nanowires with proximity-induced superconductivity. Peculiar features of the Josephson effect arise due to the interplay of spin-orbit interaction and external Zeenmn field. By tuning the Zeeman field orientation, the device can vary from 0 to π junction. Afore importantly, nonzero ,losephson current is possible at zero phase difference across the junction. Although this anomalous Josephson current is not relevant to the topological phase transition, its magnitude can be significantly enhanced whe, n the nanowire, s become topological superconductors where Majorana bound states emerge. Distinct modulation patterns are obtained for the semiconductor nanowires in the topologically trivial and non-trivial phases. These results are useful to probe the topological phase transition in semiconductor nanowire junctions via the dc Josephson effect. 展开更多
关键词 of IS on in for Anomalous direct-current Josephson Effect in Semiconductor Nanowire Junctions SOI
原文传递
Modeling of Pulsed Direct-Current Glow Discharge
18
作者 杜木 郑亚茹 +3 位作者 范宇佳 张楠 刘成森 王德真 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第4期447-451,共5页
A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simul... A self-consistent model was adopted to study the time evolution of low-voltage pulsed DC glow discharge. The distributions of electric field, ion density and electron density in nitrogen were investigated in our simulation, and the temporal shape of the discharge current was also obtained. Our results show that the dynamic behaviors of the discharge depends strongly on the applied pulse voltage, and the use of higher pulse voltages results in a significantly increase of discharge current and a decrease of discharge delay time. The current-voltage characteristic cMculated by adjusting secondary electron emission coefficient for different applied pulse voltage under the gas pressure of 1 Torr is found in a reasonable agreement with the experimental results. 展开更多
关键词 pulsed direct-current glow discharge plasma processing plasma simulation
在线阅读 下载PDF
Effects of the sputtering power on the crystalline structure and optical properties of the silver oxide films deposited using direct-current reactive magnetron sputtering
19
作者 郜小勇 张增院 +3 位作者 马姣民 卢景霄 谷锦华 杨仕娥 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期370-375,共6页
This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18... This paper reports that a series of silver oxide (AgzO) films are deposited on glass substrates by direct-current reactive magnetron sputtering at a substrate temperature of 250 ℃ and an oxygen flux ratio of 15:18 by modifying the sputtering power (SP). The AgxO films deposited apparently show a structural evolution from cubic biphased (AgO + Ag20) to cubic single-phased (Ag20), and to biphased (Ag20 + AgO) structure. Notably, the cubic single-phased Ag20 fihn is deposited at the SP = 105 W and an AgO phase with (220) orientation discerned in the Ag^O films deposited using the SP 〉 105 W. The transmissivity and refiectivity of the AgxO films in transparent region decrease with the increase the SP, whereas the absorptivity inversely increases with the increase of the SP. These results may be due to the structural evolution and the increasing film thickness. A redshift of the films' absorption edges determined in terms of Tauc formula clearly occurs from 3.1 eV to 2.73 eV with the increase of the SP. 展开更多
关键词 Ag2O film direct-current reactive magnetron sputtering x-ray diffraction optical prop-erties
原文传递
DC microgrid stability control with constant power load:a review 被引量:1
20
作者 LI Xin ZOU Junnan LIU Jinhui 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第4期532-546,共15页
The DC microgrid has the advantages of high energy conversion efficiency,high energy transmission density,no reactive power flow,and grid-connected synchronization.It is an essential component of the future intelligen... The DC microgrid has the advantages of high energy conversion efficiency,high energy transmission density,no reactive power flow,and grid-connected synchronization.It is an essential component of the future intelligent power distribution system.Constant power load(CPL)will degrade the stability of the DC microgrid and cause system voltage oscillation due to its negative resistance characteristics.As a result,the stability of DC microgrids with CPL has become a problem.At present,the research on the stability of DC microgrid is mainly focused on unipolar DC microgrid,while the research on bipolar DC microgrid lacks systematic discussion.The stability of DC microgrid using CPL was studied first,and then the current stability criteria of DC microgrid were summarized,and its research trend was analyzed.On this basis,aiming at the stability problem caused by CPL,the existing control methods were summarized from the perspective of source converter output impedance and load converter input impedance,and the current control methods were outlined as active and passive control methods.Lastly,the research path of bipolar DC microgrid stability with CPL was prospected. 展开更多
关键词 constant power load(CPL) DC microgrid voltage balancer stability criterion cascaded system virtual resistance
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部