期刊文献+
共找到2,376篇文章
< 1 2 119 >
每页显示 20 50 100
Insight into the Fe-rich phases strengthening mechanisms of non-heat-treatable Al-Mg-Mn-Fe-Cu alloys 被引量:1
1
作者 Yuliang Zhao Weixiang He +9 位作者 Feiyu Zhao Chenghao Song Weiwen Zhang Dongfu Song Yue Tang Zhenzhong Sun Wen Yin Yanling Xue Runxia Li Ricardo Fernandez 《Journal of Materials Science & Technology》 2025年第2期232-246,共15页
This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechani... This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechanical properties of Al-Mg-Mn-Fe-Cu alloys.The findings reveal that the microstructures of the alloys consisted of an Al matrix,Al_(6)(FeMn),and Al_(2)CuMg phase particles.The addition of Fe significantly increased the yield strength(YS),and ultimate tensile strength(UTS)of the alloys,while reducing elongation.The transformation of the 3D morphology of the Al_(6)(FeMn)phase from separated and fine particles with Chinese-script morphology to interconnected rod-like structure as Fe content increased from 0.1%to 0.8%.This strengthening effect was attributed to the slip lines being blocked at the vicinity of the inter-connected Fe-rich phase,leading to grain rotation and dislocation density increment around the Fe-rich phase,ultimately improving the strength of the alloys.However,the Fe-rich phases and Al_(2)CuMg phases were found to be prone to cracking under tensile stress,resulting in decreased elongation of the alloys.This study provides a potential application in the design and manufacturing of new non-heat-treatable Al alloys for the automotive industry. 展开更多
关键词 Al alloy Fe-rich phase Synchrotron X-ray tomography Neutron diffraction In-situ EBSD Strengthening
原文传递
Chaeglobol A,an unusual octocyclic sterol with antifungal activity from the marine-derived fungus Chaetomium globosum HBU-45 被引量:1
2
作者 Yun-Feng Liu Hui-Fang Du +4 位作者 Ya-Hui Zhang Zhi-Qin Liu Xiao-Qian Qi Du-Qiang Luo Fei Cao 《Chinese Chemical Letters》 2025年第3期407-410,共4页
Chemical investigation of the marine-derived fungus Chaetomium globosum HBU-45 led to the discovery of chaeglobol A(1).Its structure was determined by spectroscopic analysis,computational electronic circular dichroism... Chemical investigation of the marine-derived fungus Chaetomium globosum HBU-45 led to the discovery of chaeglobol A(1).Its structure was determined by spectroscopic analysis,computational electronic circular dichroism(ECD)/optical rotatory dispersion(ORD)methods,and X-ray crystallography.Compound 1 represents a new skeleton with an uncommon 6/6/6/5/6/5/6/5 octacyclic system,which is presumably biosynthesized via a[4+2]cycloaddition and an enzymatic cyclization.Chaeglobol A(1)exhibited inhibitory activity against B.dothidea by destroying cell membrane integrity and causing oxidative damage within the cells. 展开更多
关键词 Marine-derived fungus Chaetomium globosum Octocyclic sterol Antifungal activity Single-crystal X-ray diffraction
原文传递
Effect of preprocessing on performances of machine learning-based mineral composition analysis on gas hydrate sediments,Ulleung Basin,East Sea 被引量:1
3
作者 Hongkeun Jin Ju Young Park +3 位作者 Sun Young Park Byeong-Kook Son Baehyun Min Kyungbook Lee 《Petroleum Science》 2025年第1期151-162,共12页
Gas hydrate(GH)is an unconventional resource estimated at 1000-120,000 trillion m^(3)worldwide.Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-tion.After two large-... Gas hydrate(GH)is an unconventional resource estimated at 1000-120,000 trillion m^(3)worldwide.Research on GH is ongoing to determine its geological and flow characteristics for commercial produc-tion.After two large-scale drilling expeditions to study the GH-bearing zone in the Ulleung Basin,the mineral composition of 488 sediment samples was analyzed using X-ray diffraction(XRD).Because the analysis is costly and dependent on experts,a machine learning model was developed to predict the mineral composition using XRD intensity profiles as input data.However,the model’s performance was limited because of improper preprocessing of the intensity profile.Because preprocessing was applied to each feature,the intensity trend was not preserved even though this factor is the most important when analyzing mineral composition.In this study,the profile was preprocessed for each sample using min-max scaling because relative intensity is critical for mineral analysis.For 49 test data among the 488 data,the convolutional neural network(CNN)model improved the average absolute error and coefficient of determination by 41%and 46%,respectively,than those of CNN model with feature-based pre-processing.This study confirms that combining preprocessing for each sample with CNN is the most efficient approach for analyzing XRD data.The developed model can be used for the compositional analysis of sediment samples from the Ulleung Basin and the Korea Plateau.In addition,the overall procedure can be applied to any XRD data of sediments worldwide. 展开更多
关键词 Sample-based preprocessing X-ray diffraction(XRD) Machine learning Mineral composition Gas hydrate(GH) Ulleung basin
原文传递
High-efficiency RGB achromatic liquid crystal diffractive optical elements 被引量:1
4
作者 Yuqiang Ding Xiaojin Huang +2 位作者 Yongziyan Ma Yan Li Shin-Tson Wu 《Opto-Electronic Advances》 2025年第3期4-15,共12页
Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However... Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs. 展开更多
关键词 achromatic diffractive optical elements Pacharatnam-Berry phase optical elements liquid crystal planar optics near-eye displays
在线阅读 下载PDF
Improvement of Lattice Parameter Accuracy in Single Crystal XRD Based on a Laser-Induced X-Ray Source
5
作者 LIU Jin WANG Qiannan LI Jiangtao 《高压物理学报》 北大核心 2025年第4期9-15,共7页
The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more... The lattice parameter,measured with sufficient accuracy,can be utilized to evaluate the quality of single crystals and to determine the equation of state for materials.We propose an iterative method for obtaining more precise lattice parameters using the interaction points for the pseudo-Kossel pattern obtained from laser-induced X-ray diffraction(XRD).This method has been validated by the analysis of an XRD experiment conducted on iron single crystals.Furthermore,the method was used to calculate the compression ratio and rotated angle of an LiF sample under high pressure loading.This technique provides a robust tool for in-situ characterization of structural changes in single crystals under extreme conditions.It has significant implications for studying the equation of state and phase transitions. 展开更多
关键词 lattice parameter measurement accuracy single crystal X-ray diffraction iterative algorithm high pressure ratio of compression
在线阅读 下载PDF
Controllable two-dimensional asymmetric diffraction grating via vortex light in a semiconductor double quantum wells system
6
作者 Kunpeng Zhao Duo Zhang +1 位作者 Junbing Guo Jiaqian Li 《Communications in Theoretical Physics》 2025年第8期49-58,共10页
We present a theoretical scheme to realize two-dimensional(2D)asymmetric diffraction grating in a five-level inverted Y-type asymmetric double semiconductor quantum wells(SQWs)structure with resonant tunneling.The SQW... We present a theoretical scheme to realize two-dimensional(2D)asymmetric diffraction grating in a five-level inverted Y-type asymmetric double semiconductor quantum wells(SQWs)structure with resonant tunneling.The SQW structure interacts with a weak probe laser field,a spatially independent 2D standing-wave(SW)field,and a Laguerre–Gaussian(LG)vortex field,respectively.The results indicate that the diffraction patterns are highly sensitive to amplitude modulation and phase modulation.Because of the existence of vortex light,it is possible to realize asymmetric high-order diffraction in the SQW structure,and then a 2D asymmetric grating is established.By adjusting the detunings of the probe field,vortex field,and SW field,as well as the interaction length,diffraction intensity,and direction of the 2D asymmetric electromagnetically induced grating(EIG)can be controlled effectively.In addition,the number of orbital angular momenta(OAM)and beam waist parameter can be used to modulate the diffraction intensity and energy transfer of the probe light in different regions.High-order diffraction intensity is enhanced and high-efficiency 2D asymmetric diffraction grating with different diffraction patterns is obtained in the scheme.Such 2D asymmetric diffraction grating may be beneficial to the research of optical communication and innovative semiconductor quantum devices. 展开更多
关键词 asymmetric diffraction grating standing-wave field laguerre-gaussian vortex field diffraction property semiconductor quantum well
原文传递
Microscopic characterization and analysis of nickel-plated steel coatings
7
作者 GU Jiaqing LI Xiujun DENG Zhaojun 《Baosteel Technical Research》 2025年第1期17-27,共11页
Employing experimental equipment and techniques,such as electron backscatter diffraction,transmission Kikuchi diffraction,and transmission electron microscopy,the microstructure,phase structure,and orientation relatio... Employing experimental equipment and techniques,such as electron backscatter diffraction,transmission Kikuchi diffraction,and transmission electron microscopy,the microstructure,phase structure,and orientation relationships of 0.6μm electroplated nickel(Ni)steel following annealing at 580-650℃for 15-30 hours were investigated.A comprehensive analysis was conducted to gain insights into the complex changes in the material's properties due to the annealing process.The results reveal that prolonged annealing led to considerable long-range diffusion of surface Ni atoms into the substrate of the 0.6μm Ni-plated steel.This diffusion process resulted in the formation of an alloy diffusion layer,approximately 4μm in thickness,which altered the material's microstructural characteristics.The extent of diffusion and its effect on the microstructure and structure were meticulously quantified.At the annealing temperature,the diffused Ni in the substrate,acting as an austenite-stabilizing element,expanded the austenite phase region.The alloy layer at this temperature predominantly consisted of the face-centered cubic(FCC)-structuredγ(Fe,Ni)solid solution.Upon cooling to room temperature,the alloy diffusion layer evolved into a dual-layer composite structure.The upper layer mainly comprised the FCC-structuredγ(Fe,Ni)solid solution,interspersed with a minor FCC compound superstructure phase.The lower layer underwent a diffusionless phase transformation during cooling,which led to the formation of the body-centered tetragonal/body-centered cubic-structured martensite.This phase,which is known for its high hardness and numerous variants,maintained the classic Kurdjumov-Sachs orientation relationship with the upper FCC parent phase,and it satisfied the close-packed plane{111}γ//{110}α′and close-packed direction<110>γ//<111>α′.A detailed analysis of the different phases within the alloy layer and their phase transitions was presented,offering an in-depth understanding of the material's characteristics. 展开更多
关键词 nickel-plated steel electron backscatter diffraction transmission Kikuchi diffraction transmission electron microscopy SUPERSTRUCTURE
在线阅读 下载PDF
Diffraction classification imaging using coordinate attention enhanced DenseNet
8
作者 Tong-Jie Sheng Jing-Tao Zhao +2 位作者 Su-Ping Peng Zong-Nan Chen Jie Yang 《Petroleum Science》 2025年第6期2353-2383,共31页
In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and g... In oil and gas exploration,small-scale karst cavities and faults are important targets.The former often serve as reservoir space for carbonate reservoirs,while the latter often provide migration pathways for oil and gas.Due to these differences,the classification and identification of karst cavities and faults are of great significance for reservoir development.Traditional seismic attributes and diffraction imaging techniques can effectively identify discontinuities in seismic images,but these techniques do not distinguish whether these discontinuities are karst cavities,faults,or other structures.It poses a challenge for seismic interpretation to accurately locate and classify karst cavities or faults within the seismic attribute maps and diffraction imaging profiles.In seismic data,the scattering waves are associated with small-scale scatters like karst cavities,while diffracted waves are seismic responses from discontinuous structures such as faults,reflector edges and fractures.In order to achieve classification and identification of small-scale karst cavities and faults in seismic images,we propose a diffraction classification imaging method which classifies diffracted and scattered waves in the azimuth-dip angle image matrix using a modified DenseNet.We introduce a coordinate attention module into DenseNet,enabling more precise extraction of dynamic and azimuthal features of diffracted and scattered waves in the azimuth-dip angle image matrix.Leveraging these extracted features,the modified DenseNet can produce reliable probabilities for diffracted/scattered waves,achieving high-accuracy automatic classification of cavities and faults based on diffraction imaging.The proposed method achieves 96%classification accuracy on the synthetic dataset.The field data experiment demonstrates that the proposed method can accurately classify small-scale faults and scatterers,further enhancing the resolution of diffraction imaging in complex geologic structures,and contributing to the localization of karstic fracture-cavern reservoirs. 展开更多
关键词 Diffraction imaging Diffraction classification Azimuth-dip angle image matrix Coordinate attention DenseNet
原文传递
Second Harmonic-Induced Ultrafast Wrinkle Formation in Two-Dimensional Material
9
作者 Xiaodong Wang Yongzhao Zhang +3 位作者 Shuaishuai Sun Jun Li Shaobo Cheng Huaixin Yang 《Chinese Physics Letters》 2025年第4期73-84,共12页
The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(U... The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films. 展开更多
关键词 second harmonic ultrafast electron diffraction ued laser induced bending picosecond dynamics control wrinkles strain gradients ultrafast wrinkling two dimensional materials ultrafast electron diffraction
原文传递
Effect of wood vinegar on the release of calcium,magnesium,and phosphorus from calcareous soils in different land uses
10
作者 Soheila Sadat HASHEMI 《Journal of Arid Land》 2025年第5期680-695,共16页
The release of essential nutrients from soil minerals for plant growth in calcareous soils,facilitated by organic extractants,is critical in semi-arid areas,particularly for elements affected by high soil pH.This stud... The release of essential nutrients from soil minerals for plant growth in calcareous soils,facilitated by organic extractants,is critical in semi-arid areas,particularly for elements affected by high soil pH.This study aims to investigate the release of calcium(Ca),magnesium(Mg),and phosphorus(P)through the application of wood vinegar extract in surface calcareous soils in Borojerd City,Lorestan Province,Iran.The experiment was conducted using a completely randomized design with three replications.The treatments included soils from three different land uses:vineyard,wheat field,and rangeland,each treated with 1.00%wood vinegar solution.Cumulative measurements of the specified elements were recorded over 10 consecutive 0.5 h intervals.The release data were analyzed using four various kinetic models(Elovich equation,parabolic diffusion law,power function equation,and zero-order kinetics).The highest concentrations recorded were for Ca(39,500.00 mg/kg),Mg(5880.00 mg/kg),and P(5.00 mg/kg)in grape cultivation.The findings revealed a significant difference in Ca release between grape cultivation and rangeland(P<0.01),while the Mg release showed a significant difference between both grape cultivation and rangeland and wheat cultivation(P<0.01).Additionally,the cumulative release of P showed significant differences between grape cultivation and both wheat and rangeland(P<0.01).The results indicated that the zero-order kinetics provided the best fit for the data(R^(2)=0.99).The maximum initial release amount was observed in grape cultivation when applying the zero-order kinetics,while the highest release rate was achieved using the parabolic diffusion law across three applications.Wood vinegar had the capacity to degrade various clay minerals,including vermiculite,smectite,palygorskite,and,to some extent,illite,resulting in the release of associated elements.Consequently,it can be concluded that wood vinegar can be effectively utilized in grape cultivation as an agent for reducing soil acidity,thereby enhancing the availability of soil nutrients and decreasing reliance on chemical fertilizers. 展开更多
关键词 X-ray diffraction kinetics analysis VINEYARD wheat field RANGELAND VERMICULITE
在线阅读 下载PDF
Polarization-sensitive nonlinear optical diffraction
11
作者 Jianluo Chen Lihong Hong +2 位作者 Yu Zou Jiacheng Li Zhi-Yuan Li 《Chinese Physics B》 2025年第6期350-355,共6页
When a laser beam is incident on a nonlinear grating with a laterally modulated second-order nonlinear coefficient,nonlinear diffraction of the noncollinear second-harmonic generation(SHG)signal occurs,with Raman–Nat... When a laser beam is incident on a nonlinear grating with a laterally modulated second-order nonlinear coefficient,nonlinear diffraction of the noncollinear second-harmonic generation(SHG)signal occurs,with Raman–Nath nonlinear diffraction(NRND)being a prominent example.As these SHG NRND processes involve coupling between the fundamental-wave pump laser vectorial field and the SHG laser vectorial field through the second-order nonlinearity secondrank tensor of the nonlinear crystal,the nonlinear interaction between light and the nonlinear grating can be manipulated by adjusting the polarization state of the pump laser.In this paper,we derive the relationship between the polarization state of the incident light and the generated nonlinear diffraction signal based on the nonlinear coupled wave equation and experimentally validate the predicted diffraction characteristics.The results show that the optical properties of each order of NRND are highly sensitive to the polarization angle of the incident pump laser beam. 展开更多
关键词 Raman–Nath nonlinear diffraction(NRND) nonlinear diffraction POLARIZATION
原文传递
The Gravitational Constant G May Decrease between Millimetre-Sized Masses
12
作者 Qinghua Cui 《Journal of Modern Physics》 2025年第1期133-139,共7页
The Newtonian gravitational constant G is one of the most important fundamental constants of nature, but still remains resistant to the standard model of physics and disconnected from quantum theory. During the past &... The Newtonian gravitational constant G is one of the most important fundamental constants of nature, but still remains resistant to the standard model of physics and disconnected from quantum theory. During the past >100 years, hundreds of G values have been measured to be ranging around 6.66 to 6.7559 × 10−11 m3·kg−1·s−2 using macroscopic masses. More recently, however, a G value ((6.04 ± 0.06) × 10−11 m3·kg−1·s−2) measured using millimetre-sized masses shows significant deviation (by ~9%) from the reference G value, which the authors explained is resulted from “the known systematic uncertainties”. However, based on the observation of historical G values and the protocol of the millimetre-sized masses based experiment, here we proposed a theory that this deviation is not from “systematic uncertainties” but actually G will rapidly decrease when masses sphere diameter is less than 0.02 metres. Moreover, this theory predicted the G value will be 5.96 × 10−11 m3·kg−1·s−2 between masses whose diameter are 2 millimetres (0.002 metres), which matches the measured G value very well. 展开更多
关键词 GRAVITY Gravitational Constant Cosmic Microwave Background DIFFRACTION
在线阅读 下载PDF
Sub-Diffraction Limit Quantum Metrology for Nanofabrication
13
作者 Wenyi Ye Yang Li +10 位作者 Lianwei Chen Mingbo Pu Zheting Meng Yuanjian Huang Hengshuo Guo Xiaoyin Li Yinghui Guo Xiong Li Yun Long Emmanuel Stratakis Xiangang Luo 《Engineering》 2025年第6期96-103,共8页
Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditio... Optical monitoring of object position and alignment with nanoscale precision is critical for ultra-precision measurement applications,such as micro/nano-fabrication,weak force sensing,and micro-scopic imaging.Traditional optical nanometry methods often rely on precision nanostructure fabrication,multi-beam interferometry,or complex post-processing algorithms,which can limit their practical use.In this study,we introduced a simplified and robust quantum measurement technique with an achievable resolution of 2.2 pm and an experimental demonstration of 1 nm resolution,distinguishing it from conventional interferometry,which depended on multiple reference beams.We designed a metasurface substrate with a mode-conversion function,in which an incident Gaussian beam is converted into higher-order transverse electromagnetic mode(TEM)modes.A theoretical analysis,including calculations of the Fisher information,demonstrated that the accuracy was maintained for nanoscale displacements.In conclusion,the study findings provide a new approach for precise alignment and metrology of nanofabrication and other advanced applications. 展开更多
关键词 Nanofabrication Precision measurement Diffraction limit Quantum metrology
在线阅读 下载PDF
Synergistic effects of constituents in rare earth-based composites:Enhanced structural,electrical and magnetic properties for water splitting applications
14
作者 Chitralekha S.Shankar A.P.Singh 《Journal of Rare Earths》 2025年第1期105-114,I0005,共11页
Rare earth-based Bi_(0.85)La_(0.15)FeO_(3)(BLFO)and NdMnO_(3)(NMO)particles were synthesised using the solidstate route,and their roles affecting structural,electrical,magnetic properties along with hydroelectric appl... Rare earth-based Bi_(0.85)La_(0.15)FeO_(3)(BLFO)and NdMnO_(3)(NMO)particles were synthesised using the solidstate route,and their roles affecting structural,electrical,magnetic properties along with hydroelectric application in different concentrations i.e.,(1-x)BLFO:xNMO(where x=0,0.10,0.20,0.30 and 1.0)ceramics composites were investigated.X-ray diffraction analyses confirm the pure-phase formation of BLFO:NMO composites,featuring micrometer-scale crystallite sizes.Fourier transform infrared(FT-IR)spectra of BLFO:NMO composites reveal peak shifts with rising NMO content,indicating composite formation.These composites exhibit robust Maxwell-Wagner polarization and a pronounced composition-dependent behavior.The addition of NMO to BLFO results in a rise in dielectric permittivity at lower frequencies,confirming relaxor behavior and indicating success in achieving the transition temperature.Impedance spectroscopy facilitates a clearer understanding of how charge carriers contribute to these composites and the impact of grain/grain boundaries.The saturation magnetization maximum value(i.e.,0.807 emu/g)was attained in 0.7BLFO-0.3NMO.The coercivity decreases with the addition of NMO in BLFO.The results suggest the composite's enhanced suitability for microelectronics and hydropower cells,showing improved hydroelectric cell performance with increased NMO in BLFO,highlighting a notable ion diffusion mechanism. 展开更多
关键词 COMPOSITES X-ray diffraction Relative permittivity Hydroelectric cell Rare earths
原文传递
Lattice and phonon properties in semiconductors FeSb_(2)and RuSb_(2)
15
作者 Meng Zhang Shengnan Dai +11 位作者 Ranran Zhang Mingfang Shu Wei Xu Jinfeng Zhu Xianglin Liu Yixuan Luo Toru Ishigaki Bo Duan Yanfeng Guo Zhe Qu Jiong Yang Jie Ma 《Chinese Physics B》 2025年第8期404-411,共8页
The family of transition-metal dipnictides,MX2(M:metal,X:N,P,As,Sb,and Bi),has emerged as an important quantum material system due to its unique physical properties,such as large magnetoresistance,colossal Seebeck coe... The family of transition-metal dipnictides,MX2(M:metal,X:N,P,As,Sb,and Bi),has emerged as an important quantum material system due to its unique physical properties,such as large magnetoresistance,colossal Seebeck coefficients,and Weyl semimetal characteristics.In order to study the M-site ions effect on the lattice structure and the related dynamics,we compared two isostructural compounds,FeSb_(2)and RuSb_(2).Neutron diffraction,specific heat,and Raman scattering spectra of RuSb_(2)were measured.We found that the thermal expansion coefficients are isotropic for RuSb_(2),in contrast to the anisotropic behavior reported previously in FeSb_(2).Moreover,the specific heat of RuSb_(2)shows a bosonlike anomaly around 25 K.Four of the six predicted vibrational modes were identified by polarized Raman scattering spectra and successfully simulated by ab initio calculations.Meanwhile,the temperature-dependent linewidths reveal that phonon-phonon interactions might dominate above 50 K,while electron-phonon coupling remains relatively weak. 展开更多
关键词 transition-metal dipnictide neutron diffraction RAMAN boson-like peak
原文传递
Parent austenite grain reconstruction in martensitic steel
16
作者 Hao Feng Haijian Wang +3 位作者 Huabing Li Hongchun Zhu Shucai Zhang Zhouhua Jiang 《Journal of Materials Science & Technology》 2025年第12期244-257,共14页
In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indic... In this study, novel reconstruction methods, including grain graph and variant graph, were established to reconstruct parent austenite on the basis of electron backscatter diffraction (EBSD) data. The evaluation indicators included boundary identification and variant distribution. Moreover, an innovative variant pair analysis method was proposed. The results indicated that the Kurdjumov-Sachs orientation relationship was the most appropriate because it had the smallest refinement error and deviation. In addition, the variant graph reconstruction was more effective in reducing mis-indexing areas than the grain graph, exhibiting a robust capacity to accurately identify austenite grain boundaries. Additionally, the variant graph reconstruction induced the transformation of variants, variant pairs, close-packed plane (CP) groups, and Bain groups. Moreover, various reconstructed datasets (calc-grain data and EBSD data) affected the distribution of variants. The austenite grains reconstructed from the calc-grain data featured two or more variants clustered within the same region due to the preprocessing (calculating, filtering, and smoothing) of the EBSD data. These variations did not impede the microstructural analysis when consistent original data and reconstruction methods were used. The reconstruction of parent austenite grains holds promise for providing a fresh perspective and a deeper understanding of strengthening and toughening mechanisms in the future. 展开更多
关键词 Martensitic steel Parent austenite grain RECONSTRUCTION Electron backscattering diffraction VARIANT
原文传递
Nonlinear Raman–Nath diffraction of inclined femtosecond laser by periodically poled lithium niobate nonlinear grating
17
作者 Jiacheng Li Lihong Hong +2 位作者 Yu Zou Jianluo Chen Zhi-Yuan Li 《Chinese Physics B》 2025年第5期424-429,共6页
When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent ex... When a pump laser beam strikes the surface of a nonlinear crystal with modulated second-order nonlinearity,various nonlinear diffraction phenomena occur,with nonlinear Raman–Nath diffraction(NRND)being a prominent example.In this study,we use an 800-nm Ti:sapphire femtosecond laser beam to pump the surface of a periodically poled lithium niobate(PPLN)crystal thin-plate nonlinear grating.By rotating the crystal,we change the incidence angle and observe and measure the exit angle,polarization,and power of NRND spots on the other side of the crystal.The experiment shows that NRND characteristics are highly sensitive to the incidence angle of the pump laser beam,which are consistent with the theoretical prediction.We expect that this research will advance the understanding of nonlinear diffraction and provide valuable insights for nonlinear optical interaction in complicated geometric and physical configurations. 展开更多
关键词 nonlinear diffraction second harmonic quasi-phase matching oblique incidence
原文传递
Temperature-dependent deformation behavior of dual-phase medium-entropy alloy:In-situ neutron diffraction study
18
作者 Gang Hee Gu Sang Guk Jeong +8 位作者 Yoon-Uk Heo Hyojeong Ha Soung Yeoul Ahn Ji Yeong Lee Jungwan Lee Stefanus Harjo Wu Gong Jungwook Cho Hyoung Seop Kim 《Journal of Materials Science & Technology》 2025年第20期308-324,共17页
Face-centered cubic(FCC)equi-atomic multi-principal element alloys(MPEAs)exhibit excellent mechan-ical properties over a broad temperature range from cryogenic temperatures(CTs)to room temperature(RT).Specifically,whi... Face-centered cubic(FCC)equi-atomic multi-principal element alloys(MPEAs)exhibit excellent mechan-ical properties over a broad temperature range from cryogenic temperatures(CTs)to room temperature(RT).Specifically,while the deformation mechanism is dominated solely by dislocation slip at RT,the re-duction in stacking fault energy(SFE)at CTs leads to enhanced strain hardening with deformation twin-ning.This study employs in-situ neutron diffraction to reveal the temperature-dependent deformation be-havior of the FCC/body-centered cubic(BCC)dual-phase(DP)Al7(CoNiV)93 medium-entropy alloy(MEA),which possesses a matrix exhibiting deformation behavior analogous to that of representative equi-atomic MPEAs.Alongside the increased lattice friction stress associated with reduced temperature as a thermal component,deformation twinning at liquid nitrogen temperature(LNT)facilitates dislocation activity in the FCC matrix,leading to additional strain hardening induced by the dynamic Hall-Petch effect.This would give the appearance that the improved strengthening/hardening behaviors at LNT,compared to RT,are primarily attributable to the FCC phase.In contrast,the BCC precipitates are governed solely by dislocation slip for plastic deformation at both 77 K and 298 K,exhibiting a similar trend in dislocation density evolution.Nevertheless,empirical and quantitative findings indicate that the intrinsically high Peierls-Nabarro barriers in the BCC precipitates exhibit pronounced temperature-dependent lattice fric-tion stress,suggesting that the BCC precipitates play a more significant role in the temperature-dependent strengthening/hardening behaviors for the DP-MEA.This study provides a comprehensive understanding of deformation behavior by thoroughly analyzing temperature-dependent strengthening/hardening mech-anisms across various DP-MPEA systems,offering valuable guidelines for future alloy design. 展开更多
关键词 In-situ neutron diffraction Medium-entropy alloy Dual-phase microstructure Deformation behavior Mechanical properties
原文传递
Solid solution dependence of the deformation behavior in Mg-xZn(x=0,1,2 wt%)alloys:In-situ neutron diffraction and crystal plasticity modeling
19
作者 Huai Wang Soo Yeol Lee +3 位作者 You Sub Kim Huamiao Wang Wanchuck Woo Ke An 《Journal of Magnesium and Alloys》 2025年第2期823-838,共16页
The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were... The effects of solid solution on the deformation behavior of binary Mg-xZn(x=0,1,2 wt%)alloys featuring a designated texture that enables extension twinning under tension parallel to the basal pole in most grains,were investigated using in-situ neutron diffraction and the EVPSC-TDT model.Neutron diffraction was used to quantitatively track grain-level lattice strains and diffraction intensity changes(related to mechanical twinning)in differently oriented grains of each alloy during cyclic tensile/compressive loadings.These measurements were accurately captured by the model.The stress-strain curves of Mg-1 wt%Zn and Mg-2 wt%Zn alloys show as-expected solid solution strengthening from the addition of Zn compared to pure Mg.The macroscopic yielding and hardening behaviors are explained by alternating slip and twinning modes as calculated by the model.The solid solution's influence on individual deformation modes,including basal〈a〉slip,prismatic〈a〉slip,and extension twinning,was then quantitatively assessed in terms of activity,yielding behavior,and hardening response by combining neutron diffraction results with crystal plasticity predictions.The Mg-1 wt%Zn alloy displays distinct yielding and hardening behavior due to solid solution softening of prismatic〈a〉slip.Additionally,the dependence of extension twinning,in terms of the twinning volume fraction,on Zn content exhibits opposite trends under tensile and compressive loadings. 展开更多
关键词 Magnesium alloy Deformation behavior Solid solution Crystal plasticity modeling Neutron diffraction
在线阅读 下载PDF
Structural evolution and bandgap modification of a robust mixed-valence compound Eu_(9)MgS_(2)B_(20)O_(41)under pressure
20
作者 Boyang Fu Wenfeng Zhou +4 位作者 Fuyang Liu Luhong Wang Haozhe Liu Sheng-Ping Guo Weizhao Cai 《Chinese Physics B》 2025年第8期194-200,共7页
The recently discovered mixed-valence compound Eu_(9)MgS_(2)B_(20)O_(41)is composed of triple-kagomé-layers separated by nonmagnetic Mg^(2+)ions,and intervalence charge transfer has been observed in the mixed Eu^... The recently discovered mixed-valence compound Eu_(9)MgS_(2)B_(20)O_(41)is composed of triple-kagomé-layers separated by nonmagnetic Mg^(2+)ions,and intervalence charge transfer has been observed in the mixed Eu^(2+)and Eu^(3+)ions within the kagomé layers,exhibiting similar characteristics typical of a quantum spin liquid.In this study,high-pressure in situ x-ray diffraction measurements on Eu_(9)MgS_(2)B_(20)O_(41)were conducted within the range of 0.1 MPa to 64.4 GPa.The results revealed that the stabilization of the ambient-pressure phase,with no transition from mixed valence to single valence observed within the studied pressure range.The bulk modulus of the sample was determined to be 167.3(28)GPa and 180.8(17)GPa,for the single-crystal and powder x-ray diffraction data at room temperature,respectively.These values correspond to approximately 40%of the bulk modulus of diamond.Moreover,absorption spectroscopy measurements were carried out up to 37.9 GPa,revealing a~20%reduction in the energy band gap,mainly due to the shortened Eu-O bond lengths.The relationship between pressure and band gap demonstrates a nearly linear trend,with a slope of-0.013 eV/GPa.The findings of the present study imply that the studied sample demonstrates considerable robustness under extreme pressures. 展开更多
关键词 diamond anvil cells x-ray diffraction crystal structure high pressure
原文传递
上一页 1 2 119 下一页 到第
使用帮助 返回顶部