Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immun...Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.展开更多
Objective:To observe the tolerance and the dependence of endomorphin-1 (EM-1) in rats and the possible mechanisms. Methods:Sixty Sprague-Dawley rats were randomly allocated into saline, acute EM-1-treated and chro...Objective:To observe the tolerance and the dependence of endomorphin-1 (EM-1) in rats and the possible mechanisms. Methods:Sixty Sprague-Dawley rats were randomly allocated into saline, acute EM-1-treated and chronic EM-1-treated groups. The rats were intracerebroventricularly injected with saline, acute EM-1 10 μg/kg 30 rain prior to sacrifice,and chronic EM-1 by daily administration at 8:00 A.M. and 15:00 P.M. from 10 μg/kg on the 1^st day to 50 μg/kg on the 94 day, respectively. In chronic EM-1-treated group, the median antinociceptive dose (AD50) and the catatonic median effective dose (ED50) were determined by the improved Dixon's method. Natural withdrawl test was used to assess the dependence of EM-1. Maximal binding capacity (Bmax) and dissociation constant (Kd) of 3H-DAMGO, binding to mu-opioid receptor (MOR) in brain tissue, was measured by Scatchard analysis. Gene expression of MOR was measured by reverse transcription-polymerase chain reaction(RT-PCR). Results :Tolerance of the antinociceptic and catatonic effects on the 3rd day (3.1-fold and 1.9-fold ) and the 9th day (28.4-fold and 8.5-fold) were observed in chronic EM-1-treated group (P 〈 0.05). Jumping times and withdrawal scores of rats were significantly higher in the chronic EM-1-treated group than those in saline group on the 94 day (P 〈 0.05). Bmax and mRNA expression of MOR in cortex, midbrain and striatum were lower in chronic EM-1-treated group on the 94 day than the other two groups(P 〈 0.05), but Kd had no significant difference (P 〉 0.05). AD50,ED50,Bmax ,Kd and gene expression of MOR were recorded. Conclusion: EM-1 possesses the tolerance and the dependence. After a long-term treatment, EM-1 down regulates the binding capacity and mRNA of MOR, which somewhat accounts for the dependence.展开更多
Mounting evidence supports that a newly identified regulatory T cell (Treg),CD4+LAP+ Treg,is associated with oral tolerance induction and following inhibition of atherosclerosis,but little is described about whether n...Mounting evidence supports that a newly identified regulatory T cell (Treg),CD4+LAP+ Treg,is associated with oral tolerance induction and following inhibition of atherosclerosis,but little is described about whether nasal tolerance to antigen likewise induces the novel Tregs production and the relevant antiatherosclerotic benefit.We investigated the effect of nasal administration of heat shock protein-60 (HSP60) on atherogenesis.HSP60 or phosphate buffer solution (PBS) was nasally adminis-tered to six-week-old male ApoE-/-mice.At the 10th week after the nasal administration,there was a significant decrease in atherosclerotic plaque areas of aortic roots in the HSP60-treated mice as com-pared with those in the PBS-treated mice.Atherosclerosis suppression was accompanied with a signifi-cant increase in CD4+LAP+ and CD4+CD25+Foxp3+ Tregs and a concurrently increased production of TGF-β in the HSP60-treated mice.The protective effect of HSP60 was offset by injection of anti-TGF-βantibody.It is concluded that nasal administration of HSP60 can inhibit atherosclerotic formation through immune tolerance which is established by Tregs depending on the induction of anti-inflammatory cytokine TGF-β.Immune tolerance induced by nasal administration of HSP60 may provide an alternative therapeutic method for atherosclerosis.展开更多
Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular le...Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular level,many small molecules play crucial roles in balancing growth and defense,and stable high yields can be achieved by fine-tuning the responses to external stimuli.Therefore,it is essential to understand the molecular mechanisms underlying plant growth in response to heat stress and how plants can adjust their biological processes to survive heat stress conditions.In this review,we summarize the heat-responsive genetic networks in plants and crop plants based on recent studies.We focus on how plants sense the elevated temperatures and initiate the cellular and metabolic responses that allow them to adapt to the adverse growing conditions.We also describe the trade-off between plant growth and responses to heat stress.Specifically,we address the regulatory network of plant responses to heat stress,which will facilitate the discovery of novel thermotolerance genes and provide new opportunities for agricultural applications.展开更多
The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase ge...The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase gene family member OsCHI3 participates in rice responses to drought stress through the regulation of flavonoid biosynthesis.Overexpression of OsCHI3 increased the tolerance of rice to drought stress.In contrast,CRISPR/Cas9-mediated deletion of OsCHI3 reduced the drought tolerance of rice,an effect that is reversed by exogenous ABA treatment.Transcriptomic and physiological biochemical analyses indicated that flavonoids regulated by OsCHI3 not only scavenge reactive oxygen species(ROS)but also increase drought tolerance in rice by stimulating ABA biosynthesis through the regulation of OsNCED1 and OsABA8ox3 expression.These findings demonstrate that OsCHI3 increases drought stress tolerance in rice by activating the antioxidant defense system and the ABA metabolic pathway,providing new clues for drought-resistant rice breeding research.展开更多
Strigolactones are carotenoid-derived phytohormones that impact plant growth and development in diverse ways.However,the roles of strigolactones in the responses to temperature stresses are largely unknown.Here,we dem...Strigolactones are carotenoid-derived phytohormones that impact plant growth and development in diverse ways.However,the roles of strigolactones in the responses to temperature stresses are largely unknown.Here,we demonstrated that strigolactone biosynthesis is induced in tomato(Solanum lycopersicum)by heat and cold stresses.Compromised strigolactone biosynthesis or signaling negatively affected heat and cold tolerance,while application of the synthetic strigolactone analog GR245DS enhanced heat and cold tolerance.Strigolactone-mediated heat and cold tolerance was associated with the induction of abscisic acid(ABA),heat shock protein 70(HSP70)accumulation,C-REPEAT BINDING FACTOR 1(CBF1)transcription,and antioxidant enzyme activity.Importantly,a deficiency in ABA biosynthesis compromised the GR245DS effects on heat and cold stresses and abolished the GR245DS-induced transcription of HSP70,CBF1,and antioxidant-related genes.These results support that strigolactones positively regulate tomato heat and cold tolerance and that they do so at least partially by the induction of CBFs and HSPs and the antioxidant response in an ABA-dependent manner.展开更多
The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:tho...The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.展开更多
Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing p...Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing plants to resist recurrent severe drought stress.However,the underlying mechanisms remain unclear.Here,we subjected wheat plants to drought priming during the vegetative growth stage and to severe drought stress at 10 days after anthesis.We then collected leaf samples at the ends of the drought priming and recovery periods,and at the end of drought stress for transcriptome sequencing in combination with phenotypic and physiological analyses.The drought-primed wheat plants maintained a lower plant temperature,with higher stomatal openness and photosynthesis,thereby resulting in much lower 1,000-grain weight and grain yield losses under the later drought stress than the non-primed plants.Interestingly,416 genes,including 27 transcription factors(e.g.,MYB,NAC,HSF),seemed to be closely related to the improved drought tolerance as indicated by the dynamic transcriptome analysis.Moreover,the candidate genes showed six temporal expression patterns and were significantly enriched in several stress response related pathways,such as plant hormone signal transduction,starch and sucrose metabolism,arginine and proline metabolism,inositol phosphate metabolism,and wax synthesis.These findings provide new insights into the physiological and molecular mechanisms of the long-term effects of early drought priming that can effectively improve drought tolerance in wheat,and may provide potential approaches for addressing the challenges of increasing abiotic stresses and securing food safety under global warming scenarios.展开更多
FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especi...FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins.展开更多
Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in...Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.展开更多
An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential...An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential,as the loss of cached data requires access to data from external storage,which evidently increases the response latency.Typically,replication and erasure code(EC)are two fault-tolerant schemes that pose different trade-offs between access performance and storage usage.To help make the best performance and space trade-off,we design ElasticMem,a hybrid fault-tolerant distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant scheme.ElasticMem exploits a novel EC-oriented replication(EOR)that carefully designs the data placement of replication according to the future data layout of EC to enhance the I/O efficiency of redundancy transition.ElasticMem solves the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data bypassing.It detects correlated read and write requests and serves subsequent read requests with local data.We implement a prototype that realizes ElasticMem based on Memcached.Experiments show that ElasticMem remarkably reduces the time of redundancy transition,the overall latency of correlated concurrent data accesses,and the latency of single data access among them.展开更多
Flooding in rice fields,especially in coastal regions and low-lying river basins,causes significant devastation to crops.Rice is highly susceptible to prolonged flooding,with a drastic decline in yields if inundation ...Flooding in rice fields,especially in coastal regions and low-lying river basins,causes significant devastation to crops.Rice is highly susceptible to prolonged flooding,with a drastic decline in yields if inundation persists for more than 7 d,especially during the reproductive stage.Although the SUB1 QTL,which confers tolerance to complete submergence during the vegetative stage,has been incorporated into breeding programs,the development of alternative sources is crucial.These alternatives would broaden the genetic base,mitigate the influence of the genomic background,and extend the efficacy of SUB1 QTL to withstand longer submergence periods(up to approximately 21 d).Contemporary breeding strategies predominantly target submergence stress at the vegetative stage.However,stagnant flooding(partial submergence of vegetative parts)during the reproductive phase inflicts severe damage on the rice crop,leading to reduced yields,heightened susceptibility to pests and diseases,lodging,and inferior grain quality.The ability to tolerate stagnant flooding can be ascribed to several adaptive traits:accelerated aerenchyma formation,efficient underwater photosynthesis,reduced radial oxygen loss in submerged tissues,reinforced culms,enhanced reactive oxygen species scavenging within cells,dehydration tolerance post-flooding,and resistance to pests and diseases.A thorough investigation of the genetics underlying these traits,coupled with the integration of key alleles into elite genetic backgrounds,can significantly enhance food and income security in flood-prone rice-growing regions,particularly in coastal high-rainfall areas and low-lying river basins.This review aims to delineate an innovative breeding strategy that employs genomic,phenomic,and traditional breeding methodologies to develop rice varieties resilient to various dimensions of flooding stress at both the vegetative and reproductive stages.展开更多
Highlights●Salinity commonly hindered wheat germination,and using herb-derived carbon dots was an emerging approach to enhancing plant salt tolerance in agricultural production.●Wolfberry-driven carbon dots(Wo-CDs)w...Highlights●Salinity commonly hindered wheat germination,and using herb-derived carbon dots was an emerging approach to enhancing plant salt tolerance in agricultural production.●Wolfberry-driven carbon dots(Wo-CDs)were synthesized and applied as a nano-primer to enhance wheat salt tolerance by maintaining reactive oxygen species levels through early oxidative stress conditioning.展开更多
Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along th...Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along the southern Mediterranean rim,including Algeria,which primarily focuses on pastoral and forage practices.This study investigates salinity tolerance and ecotypic variability in Vicia narbonensis L.,a fodder legume species recognized for its potential to reclaim marginal soils.Morphological,physiological,and biochemical responses were assessed in three ecotypes(eco2,eco9,and eco10)exposed to different salinity levels(low,moderate,and severe).The study was conducted using a completely randomized block design with three blocks per ecotype per dose.The results from the two-way analysis of variance demonstrate significant effects across nearly all attributes studied,revealing distinct ecotypic responses.These findings underscore variations in growth parameters,osmotic regulation mechanisms,and biochemical adjustments.The substantial diversity observed among these ecotypes in their response to salinity provides valuable insights for breeders addressing both agronomic and ecological challenges.Multivariate analyses,including Principal Component Analysis(PCA),revealed key variables distinguishing between ecotypes under salinity stress.Moreover,Classification based on Salinity Tolerance Indices(STI)further differentiated ecotypic performance with more precision,and this is because of the combination of the different parameters studied.These results open up new prospects for the development of strategies to improve the salinity tolerance of forage legumes.展开更多
In this study,we performed a systematic analysis of the multiplicity dependence of hadron production at mid-rapidity(|y|<0.5),ranging from the light to the charm sector in proton-proton(pp)collisions at√s=13 TeV.T...In this study,we performed a systematic analysis of the multiplicity dependence of hadron production at mid-rapidity(|y|<0.5),ranging from the light to the charm sector in proton-proton(pp)collisions at√s=13 TeV.This study used a multi-phase transport(AMPT)model coupled with PYTHIA8 initial conditions.We investigated the baryon-to-meson and the strange-to-non-strange meson ratios varying with the charged particle density.By tuning the coalescence parameters,the AMPT model provides a reasonable description of the experimental data for the inclusive production of both light and charm hadrons,comparable to the string fragmentation model calculations with color reconnection effects.Additionally,we analyzed the relative production of hadrons by examining the self-normalized particle ratios as a function of the charged hadron density.Our findings suggest that parton evolution effects and the coalescence hadronization process in the AMPT model result in a strong flavor hierarchy in the multiplicity dependence of the baryon-to-meson ratio.Furthermore,our investigation of the p_(T) differential double ratio of the baryon-to-meson fraction between high-and low-multiplicity events revealed distinct modifications to the flavor associated baryon-to-meson ratio p_(T) shape in high-multiplicity events when comparing the coalescence hadronization model to the color reconnection model.These observations highlight the importance of understanding the hadronization process in high-energy pp collisions through comprehensive multiplicity-dependent multi-flavor analysis.展开更多
Evaluating plant stress tolerance and screening key regulatory genes under the combined stresses of high temperature and drought are important for studying plant stress tolerance mechanisms. In this study, the drought...Evaluating plant stress tolerance and screening key regulatory genes under the combined stresses of high temperature and drought are important for studying plant stress tolerance mechanisms. In this study, the drought tolerance of five grape varieties was evaluated under high-temperature conditions to screen key genes for further exploration of resistance mechanisms. By comparing and analysing the morphological characteristics and physiological indicators associated with the response of grapevines to drought stress and integrating them with the membership function to assess the strength of their drought tolerance, the order of drought tolerance was found to be as follows: 420A>110R>Cabernet Sauvignon(CS)>Fercal>188-08. To further analyse the mechanism of differences in drought tolerance, transcriptomic sequencing was performed on the drought-tolerant cultivar 420A, the drought-sensitive cultivar 188-08 and the control cultivar CS. The functional analysis of differential metabolic pathways indicated that the differentially expressed genes were enriched mainly in biological process category, that 420A had higher antioxidant activity. Furthermore, differentially expressed transcription factors were analyzed in five grape varieties. Genes like Vv AGL15, Vv LBD41, and Vv MYB86 showed close associations with drought tolerance,indicating their potential role in regulating drought tolerance and research significance.展开更多
Saline-alkali soil severely reduces the productivity of crops,including maize(Zea mays).Although several genes associated with saline-alkali tolerance have been identified in maize,the underlying regulatory mechanism ...Saline-alkali soil severely reduces the productivity of crops,including maize(Zea mays).Although several genes associated with saline-alkali tolerance have been identified in maize,the underlying regulatory mechanism remains elusive.Here,we report a direct link between colonization by arbuscular mycorrhizal fungi(AMF)and saline-alkali tolerance in maize.We identify s75,a natural maize mutant that cannot survive under moderate saline-alkali soil conditions or establish AM symbioses.The saline-alkali hypersensitive phenotype of s75 is caused by a 1340-bp deletion in Zm00001d033915,designated as ZmL75.This gene encodes a glycerol-3-phosphate acyltransferase localized in the endoplasmic reticulum,and is responsible for AMF colonization.ZmL75 expression levels in roots correspond with the root length colonization(RLC)rate during early vegetative development.Notably,the s75 mutant line shows a complete loss of AMF colonization,along with alterations in the diversity and structure of its root fungal microbiota.Conversely,overexpression of ZmL75 increases the RLC rate and enhances tolerance to saline-alkali soil conditions.These results suggest that ZmL75 is required for symbiosis with AMF,which directly improves saline-alkali tolerance.Our findings provide insights into maize-AMF interactions and offer a potential strategy for maize improvement.展开更多
Environmentally friendly slow-release fertilizers are highly desired in sustainable agriculture.Encapsulating fertilizers can routinely achieve controlled releasing performances but suffers from short-term effectivene...Environmentally friendly slow-release fertilizers are highly desired in sustainable agriculture.Encapsulating fertilizers can routinely achieve controlled releasing performances but suffers from short-term effectiveness or environmental unfriendliness.In this work,a bio-derived shellac incorporated with polydodecyl trimethoxysilane(SL-PDTMS)capsule was developed for long-term controlled releasing urea.Due to enhanced hydrophobicity and thus water resistance,the SL-PDTMS encapsulated urea fertilizer(SPEU)demonstrated a long-term effectiveness of 60 d,compared with SL encapsulated urea fertilizer(SEU,30 d)and pure urea fertilizer(U,5 min).In addition,SPEU showed a broad pH tolerance from 5.0 to 9.0,covering most various soil pH conditions.In the pot experiments,promoted growth of maize seedlings was observed after applying SPEU,rendering it promising as a high-performance controlled-released fertilizer.展开更多
OBJECTIVE:To observe the effect of different acupuncture frequencies on the abstinence rate which could be used as a reference for optimizing acupuncture cessation programs.METHODS:From July 2018 to June 2022,a total ...OBJECTIVE:To observe the effect of different acupuncture frequencies on the abstinence rate which could be used as a reference for optimizing acupuncture cessation programs.METHODS:From July 2018 to June 2022,a total of 220 smokers were recruited based on inclusion criteria and randomly divided into the high-frequency acupuncture group(HF group,n=110):5 times a week from the 1st to the 4th week,from weeks 5 to 8,three times a week and the low-frequency acupuncture group(LF group,n=110):3 times a week from the 1st to the 4th week,from weeks 5 to 8,twice a week,then treated for 8 weeks and followup at 1 month in Beijing.RESULTS:In total,162 subjects completed the whole study with a drop-out rate of 20.45%.The expiratory CO point abstinence rate was HF group 53/110(48.18%)vs LF group 41/110(37.27%)in Week 8(P=0.102)and HF group 46/110(41.82%)vs LF group 45/110(40.91%)in Week 12(P=0.891)and the HF acupuncture and LF acupuncture were nearly equal in the 8-week abstinence rate.In addition,both HF and LF acupuncture significantly reduced Fagerstr?m test for nicotine dependence scale(FTND)scores(P<0.05),Minnesota nicotine withdrawal scale(MNWS)scores(P<0.05),and Brief Questionnaire of Smoking Urges scale(QSU-Brief)scores(P<0.05),but HF acupuncture showed some superiority over LF acupuncture in relieving patients'smoking cravings(P<0.05).CONCLUSIONS:The study initially showed that both high-frequency acupuncture and low-frequency acupuncture treatment were safe and effective on smoking cessation for 8 weeks,but high-frequency acupuncture was advantageous in reducing smoking cravings.More accurate acupuncture frequency needs to be validated through larger clinical studies to optimize acupuncture smoking cessation programs.展开更多
Background:Globalization and increasing migration have amplified cultural diversity in healthcare services.This has rendered intercultural tolerance-a respectful and equity-based approach to differing values and belie...Background:Globalization and increasing migration have amplified cultural diversity in healthcare services.This has rendered intercultural tolerance-a respectful and equity-based approach to differing values and beliefs-a necessity in nursing care.Although intercultural tolerance is recognized in the literature as a core component of cultural competence the prevalence of this attitude among nurses and its associated factors remain underexplored in clinical practice.Methods:This cross-sectional study was conducted between October 2020 and May 2021 in a public hospital in Istanbul.The population consisted of 2,096 nurses,and 767 of them voluntarily participated in the study via an online survey(response rate:36.6%).The data collection tool included sociodemographic variables,culture-oriented descriptive characteristics,and literature-based items on intercultural tolerance.A self-assessment scale from 1 to 10 was used to evaluate personal tolerance levels.The instrument was not subjected to psychometric validation;only a pilot study for clarity was conducted.Data were analyzed using descriptive statistics,independent group comparisons,and multiple linear regression.Power analysis indicated a minimum sample size of 175,confirming the adequacy of the sample.Results:The majority of participants reported high tolerance scores(M=8.2±1.5).Most nurses endorsed the right to equal healthcare(96.7%),respect for cultural diversity(94.3%),and empathy(91.7%).However,41.3%reported awareness of their own biases,and 45.1%experienced discomfort related to language differences.Regression analysis revealed that empathy,attentiveness to cultural differences(i.e.,avoiding identical treatment of all),and egalitarian intercultural attitudes positively predicted tolerance.In contrast,discomfort with unfamiliar languages,overconfidence in cultural knowledge,and structural factors such as the clinical unit were negatively associated with tolerance.Conclusion:Although nurses generally demonstrate positive attitudes toward intercultural tolerance,internal biases and institutional barriers continue to hinder its full expression.Empathy and self-awareness should be supported not only cognitively but also through emotional and behavioral interventions.Accordingly,the integration of structured cultural competence programs into nursing education,institutional support mechanisms,and pedagogical strategies for managing prejudice are strongly recommended.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82573045,82460602,82560459)the Hainan Provincial Graduate Student Innovative Research Project(No.Qhys2024-440).
文摘Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.
文摘Objective:To observe the tolerance and the dependence of endomorphin-1 (EM-1) in rats and the possible mechanisms. Methods:Sixty Sprague-Dawley rats were randomly allocated into saline, acute EM-1-treated and chronic EM-1-treated groups. The rats were intracerebroventricularly injected with saline, acute EM-1 10 μg/kg 30 rain prior to sacrifice,and chronic EM-1 by daily administration at 8:00 A.M. and 15:00 P.M. from 10 μg/kg on the 1^st day to 50 μg/kg on the 94 day, respectively. In chronic EM-1-treated group, the median antinociceptive dose (AD50) and the catatonic median effective dose (ED50) were determined by the improved Dixon's method. Natural withdrawl test was used to assess the dependence of EM-1. Maximal binding capacity (Bmax) and dissociation constant (Kd) of 3H-DAMGO, binding to mu-opioid receptor (MOR) in brain tissue, was measured by Scatchard analysis. Gene expression of MOR was measured by reverse transcription-polymerase chain reaction(RT-PCR). Results :Tolerance of the antinociceptic and catatonic effects on the 3rd day (3.1-fold and 1.9-fold ) and the 9th day (28.4-fold and 8.5-fold) were observed in chronic EM-1-treated group (P 〈 0.05). Jumping times and withdrawal scores of rats were significantly higher in the chronic EM-1-treated group than those in saline group on the 94 day (P 〈 0.05). Bmax and mRNA expression of MOR in cortex, midbrain and striatum were lower in chronic EM-1-treated group on the 94 day than the other two groups(P 〈 0.05), but Kd had no significant difference (P 〉 0.05). AD50,ED50,Bmax ,Kd and gene expression of MOR were recorded. Conclusion: EM-1 possesses the tolerance and the dependence. After a long-term treatment, EM-1 down regulates the binding capacity and mRNA of MOR, which somewhat accounts for the dependence.
文摘Mounting evidence supports that a newly identified regulatory T cell (Treg),CD4+LAP+ Treg,is associated with oral tolerance induction and following inhibition of atherosclerosis,but little is described about whether nasal tolerance to antigen likewise induces the novel Tregs production and the relevant antiatherosclerotic benefit.We investigated the effect of nasal administration of heat shock protein-60 (HSP60) on atherogenesis.HSP60 or phosphate buffer solution (PBS) was nasally adminis-tered to six-week-old male ApoE-/-mice.At the 10th week after the nasal administration,there was a significant decrease in atherosclerotic plaque areas of aortic roots in the HSP60-treated mice as com-pared with those in the PBS-treated mice.Atherosclerosis suppression was accompanied with a signifi-cant increase in CD4+LAP+ and CD4+CD25+Foxp3+ Tregs and a concurrently increased production of TGF-β in the HSP60-treated mice.The protective effect of HSP60 was offset by injection of anti-TGF-βantibody.It is concluded that nasal administration of HSP60 can inhibit atherosclerotic formation through immune tolerance which is established by Tregs depending on the induction of anti-inflammatory cytokine TGF-β.Immune tolerance induced by nasal administration of HSP60 may provide an alternative therapeutic method for atherosclerosis.
基金supported by the National Natural Science Foundation of China(32171945,32301760)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(22IRTSTHN023)+2 种基金the Scientific and Technological Research Project of Henan Province,China(242102111116)the National Science Foundation for Postdoctoral Scientists of China(2023M731003)the Postdoctoral Research Subsidize Fund of Henan Province,China(HN2022139)。
文摘Global warming impacts plant growth and development,which in turn threatens food security.Plants can clearly respond to warm-temperature(such as by thermomorphogenesis)and high-temperature stresses.At the molecular level,many small molecules play crucial roles in balancing growth and defense,and stable high yields can be achieved by fine-tuning the responses to external stimuli.Therefore,it is essential to understand the molecular mechanisms underlying plant growth in response to heat stress and how plants can adjust their biological processes to survive heat stress conditions.In this review,we summarize the heat-responsive genetic networks in plants and crop plants based on recent studies.We focus on how plants sense the elevated temperatures and initiate the cellular and metabolic responses that allow them to adapt to the adverse growing conditions.We also describe the trade-off between plant growth and responses to heat stress.Specifically,we address the regulatory network of plant responses to heat stress,which will facilitate the discovery of novel thermotolerance genes and provide new opportunities for agricultural applications.
基金supported by Science and Technology Innovation Program of Hunan province(2024NK1010,2023NK1010,2023ZJ1080)the National Natural Science Foundation of China(U21A20208).
文摘The chalcone isomerase gene OsCHI,one of the key genes in the flavonoid biosynthesis pathway,plays an important role in rice(Oryza sativa)resistance to abiotic stresses.This study reveals how the chalcone isomerase gene family member OsCHI3 participates in rice responses to drought stress through the regulation of flavonoid biosynthesis.Overexpression of OsCHI3 increased the tolerance of rice to drought stress.In contrast,CRISPR/Cas9-mediated deletion of OsCHI3 reduced the drought tolerance of rice,an effect that is reversed by exogenous ABA treatment.Transcriptomic and physiological biochemical analyses indicated that flavonoids regulated by OsCHI3 not only scavenge reactive oxygen species(ROS)but also increase drought tolerance in rice by stimulating ABA biosynthesis through the regulation of OsNCED1 and OsABA8ox3 expression.These findings demonstrate that OsCHI3 increases drought stress tolerance in rice by activating the antioxidant defense system and the ABA metabolic pathway,providing new clues for drought-resistant rice breeding research.
基金This work was supported by the National Key Research and Development Program of China(2018YFD1000800)the State Key Program of National Natural Science Foundation of China(31430076)。
文摘Strigolactones are carotenoid-derived phytohormones that impact plant growth and development in diverse ways.However,the roles of strigolactones in the responses to temperature stresses are largely unknown.Here,we demonstrated that strigolactone biosynthesis is induced in tomato(Solanum lycopersicum)by heat and cold stresses.Compromised strigolactone biosynthesis or signaling negatively affected heat and cold tolerance,while application of the synthetic strigolactone analog GR245DS enhanced heat and cold tolerance.Strigolactone-mediated heat and cold tolerance was associated with the induction of abscisic acid(ABA),heat shock protein 70(HSP70)accumulation,C-REPEAT BINDING FACTOR 1(CBF1)transcription,and antioxidant enzyme activity.Importantly,a deficiency in ABA biosynthesis compromised the GR245DS effects on heat and cold stresses and abolished the GR245DS-induced transcription of HSP70,CBF1,and antioxidant-related genes.These results support that strigolactones positively regulate tomato heat and cold tolerance and that they do so at least partially by the induction of CBFs and HSPs and the antioxidant response in an ABA-dependent manner.
基金supported by the National Natural Science Foundation of China(Grant Nos.32072048 and U2004204)National Key Research and Development Program of China(Grant No.2023YFF1001200)+2 种基金China Rice Research Institute Basal Research Fund(Grant No.CPSIBRF-CNRRI-202404)Academician Workstation of National Nanfan Research Institute(Sanya),Chinese Agricultural Academic Science(CAAS),(Grant Nos.YBXM2422 and YBXM2423)Agricultural Science and Technology Innovation Program of CAAS,China.
文摘The leucine-rich repeat(LRR)protein family is involved in a variety of fundamental metabolic and signaling processes in plants,including growth and defense responses.LRR proteins can be divided into two categories:those containing LRR domains along with other structural elements,which are further subdivided into five groups,LRR receptor-like kinases,LRR receptor-like proteins,nucleotide-binding site LRR proteins,LRR-extensin proteins,and polygalacturonase-inhibiting proteins,and those containing only LRR domains.Functionally,various LRR proteins are primarily involved in plant development and responses to environmental stress.Notably,the LRR protein family plays a central role in signal transduction pathways related to stress adaptation.In this review,we classify and analyze the functions of LRR proteins in plants.While extensive research has been conducted on the roles of LRR proteins in disease resistance signaling,these proteins also play important roles in abiotic stress responses.This review highlights recent advances in understanding how LRR proteins mediate responses to biotic and abiotic stresses.Building upon these insights,further exploration of the roles of LRR proteins in abiotic stress resistance may aid efforts to develop rice varieties with enhanced stress and disease tolerance.
基金supported by the projects of the National Key Research and Development Program of China(2023YFD2300202)the Natural Science Foundation of Jiangsu Province,China(BK20241543)+5 种基金the National Natural Science Foundation of China(32272213,32030076,U1803235,and 32021004)the Fundamental Research Funds for the Central Universities,China(XUEKEN2023013)the Jiangsu Innovation Support Program for International Science and Technology Cooperation Project,China(BZ2023049)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(22)1006)the China Agriculture Research System(CARS-03)the Jiangsu Collaborative Innovation Center for Modern Crop Production,China(JCIC-MCP)。
文摘Frequent drought events severely restrict global crop productivity,especially those occurring in the reproductive stages.Moderate drought priming during the earlier growth stages is a promising strategy for allowing plants to resist recurrent severe drought stress.However,the underlying mechanisms remain unclear.Here,we subjected wheat plants to drought priming during the vegetative growth stage and to severe drought stress at 10 days after anthesis.We then collected leaf samples at the ends of the drought priming and recovery periods,and at the end of drought stress for transcriptome sequencing in combination with phenotypic and physiological analyses.The drought-primed wheat plants maintained a lower plant temperature,with higher stomatal openness and photosynthesis,thereby resulting in much lower 1,000-grain weight and grain yield losses under the later drought stress than the non-primed plants.Interestingly,416 genes,including 27 transcription factors(e.g.,MYB,NAC,HSF),seemed to be closely related to the improved drought tolerance as indicated by the dynamic transcriptome analysis.Moreover,the candidate genes showed six temporal expression patterns and were significantly enriched in several stress response related pathways,such as plant hormone signal transduction,starch and sucrose metabolism,arginine and proline metabolism,inositol phosphate metabolism,and wax synthesis.These findings provide new insights into the physiological and molecular mechanisms of the long-term effects of early drought priming that can effectively improve drought tolerance in wheat,and may provide potential approaches for addressing the challenges of increasing abiotic stresses and securing food safety under global warming scenarios.
基金supported by the National Natural Science Foundation of China(31871622)the Key R&D Program of Shandong Province,China(2022LZG001)。
文摘FCS-like zinc finger(FLZ)gene family members are C2-C2 zinc finger proteins that take part in seed dormancy,resistance to Myzus persicae 1,sucrose signaling and abiotic stresse tolerance.However,their functions,especially the molecular mechanism through which FLZs function,are not well understood.In this study,we characterized 120FLZs in wheat and revealed the function and mechanism of TaFLZ54D increasing salt stress tolerance in transgenic wheat.Expression analysis demonstrated that TaFLZ54D can be induced by NaCl treatment and it had the highest expression level under NaCl treatment among the 120 FLZs.Over-expression of TaFLZ54D increased wheat salt stress tolerance and the transgenic plants had higher levels of superoxide dismutase(SOD)and peroxidase(POD)activities and soluble sugar content,but a lower Na^(+)/K^(+)ratio and malondialdehyde(MDA)content than the wild type(WT)plants.Potassium ion transmembrane transporters and serine/threonine kinase inhibitor proteins showed differential expression between Ta FLZ54D transgenic wheat and the WT.Yeast two hybrid and luciferase complementation assays revealed that TaSGT1 and TaPP2C are the proteins that interact directly with TaFLZ54D.In summary,TaFLZ54D enhances salt stress tolerance through interaction with TaSGT1 and TaPP2C to reduce Na^(+)absorption and mitigate oxidative stress.The interaction between TaFLZ54D and TaSGT1,as well as TaPP2C indicated a link between salt stress tolerance of TaFLZ54D and the ubiquitin-mediated degradation of negative regulatory proteins.
基金supported by Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding(Grant No.G20220628003-03)Chongqing Municipal People's Government and Chinese Academy of Agricultural Sciences strategic cooperation project,Key-Area Research and Development Program of Guangdong Province(Grant No.2020B020220001)+3 种基金the Earmarked Fund for Modern Agro-industry Technology Research System(Grant No.CARS-23)Science and Technology Innovation Program of the Chinese Academy of Agricultural Science(Grant No.CAAS-ASTIP-IVFCAAS)Central public-interest Scientific Institution Basal Research Fund(Grant No.Y2017PT52)the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China。
文摘Heat stress causes overgrowth,leaf dryness and fruit malformation,which negatively impacts cucumber quality and yield.Yet,in spite of the devastating consequences of this abiotic stress,few genes for heat tolerance in cucumber have been identified.Here,the heat injury indices of 88 cucumber accessions representing diverse ecotypes were collected in two open-field environments,with naturally occurring high temperatures over two years.Seventeen of the 88 accessions were identified as highly heat-tolerant.Using a genome-wide association study,five loci(gHII3.1,gHII3.2,gHII3.3,gHII4.1 and gHII6.1)on three chromosomes associated with heat tolerance were detected.Pairwise linkage disequilibrium correlation,sequence polymorphisms,and qRT-PCR analyses at these loci,identified five candidate genes predicted to be casual for heat stress response in cucumber.CsaV3_3G04883,CsaV3_4G029050 and CsaV3_6G005370 each had nonsynonymous SNPs,and were significantly up-regulated by heat stress in the heat-tolerant genotypes.CsaV3_3G031890 was also induced by heat stress,but in the heatsensitive genotypes,and sequence polymorphism was only found in the promoter region.Identifying these candidate genes lays a foundation for understanding cucumber thermotolerance mechanisms.Our study is one of the few to examine heat stress in adult cucumber plants and it therefore fills a critical gap in knowledge.It is also an important first-step towards accelerating the breeding of robust heat-tolerant varieties.
基金supported by the Fundamental Research Funds for the Central Universities(WK2150110022)Anhui Provincial Natural Science Foundation(2208085QF189)National Natural Science Foundation of China(62202440).
文摘An in-memory storage system provides submillisecond latency and improves the concurrency of user applications by caching data into memory from external storage.Fault tolerance of in-memory storage systems is essential,as the loss of cached data requires access to data from external storage,which evidently increases the response latency.Typically,replication and erasure code(EC)are two fault-tolerant schemes that pose different trade-offs between access performance and storage usage.To help make the best performance and space trade-off,we design ElasticMem,a hybrid fault-tolerant distributed in-memory storage system that supports elastic redundancy transition to dynamically change the fault-tolerant scheme.ElasticMem exploits a novel EC-oriented replication(EOR)that carefully designs the data placement of replication according to the future data layout of EC to enhance the I/O efficiency of redundancy transition.ElasticMem solves the consistency problem caused by concurrent data accesses via a lightweight table-based scheme combined with data bypassing.It detects correlated read and write requests and serves subsequent read requests with local data.We implement a prototype that realizes ElasticMem based on Memcached.Experiments show that ElasticMem remarkably reduces the time of redundancy transition,the overall latency of correlated concurrent data accesses,and the latency of single data access among them.
基金the University Grants Commission(UGC),Government of India for the UGC-Non-NET Fellowship during the PhD degree program(Grant No.R/Dev/IX-Sch/BHU-Res-Sch/2022-23/51137).
文摘Flooding in rice fields,especially in coastal regions and low-lying river basins,causes significant devastation to crops.Rice is highly susceptible to prolonged flooding,with a drastic decline in yields if inundation persists for more than 7 d,especially during the reproductive stage.Although the SUB1 QTL,which confers tolerance to complete submergence during the vegetative stage,has been incorporated into breeding programs,the development of alternative sources is crucial.These alternatives would broaden the genetic base,mitigate the influence of the genomic background,and extend the efficacy of SUB1 QTL to withstand longer submergence periods(up to approximately 21 d).Contemporary breeding strategies predominantly target submergence stress at the vegetative stage.However,stagnant flooding(partial submergence of vegetative parts)during the reproductive phase inflicts severe damage on the rice crop,leading to reduced yields,heightened susceptibility to pests and diseases,lodging,and inferior grain quality.The ability to tolerate stagnant flooding can be ascribed to several adaptive traits:accelerated aerenchyma formation,efficient underwater photosynthesis,reduced radial oxygen loss in submerged tissues,reinforced culms,enhanced reactive oxygen species scavenging within cells,dehydration tolerance post-flooding,and resistance to pests and diseases.A thorough investigation of the genetics underlying these traits,coupled with the integration of key alleles into elite genetic backgrounds,can significantly enhance food and income security in flood-prone rice-growing regions,particularly in coastal high-rainfall areas and low-lying river basins.This review aims to delineate an innovative breeding strategy that employs genomic,phenomic,and traditional breeding methodologies to develop rice varieties resilient to various dimensions of flooding stress at both the vegetative and reproductive stages.
基金funded by the President’s Fund of Tarim University,China(TDZKBS202408 and TDZKCX202414)the Shihezi University High-Level Talent Project,China(RCZK202339)+1 种基金the Key Technology R&D Fund for Key Fields in the Production and Construction Corps,China(2024AB007)the Research Program of the Chinese Academy of Sciences(GJ05040103)。
文摘Highlights●Salinity commonly hindered wheat germination,and using herb-derived carbon dots was an emerging approach to enhancing plant salt tolerance in agricultural production.●Wolfberry-driven carbon dots(Wo-CDs)were synthesized and applied as a nano-primer to enhance wheat salt tolerance by maintaining reactive oxygen species levels through early oxidative stress conditioning.
基金Direction Generale de la Recherche Scientifique et du Developpement Technologique(DGRSDT)Algeria,and the Researchers Supporting Project No.(RSP2025R390),King Saud University,Riyadh,Saudi Arabia.
文摘Salinity stress is a major challenge for global agriculture,particularly in arid and semi-arid regions,limiting plant productivity due to water and soil salinity.These conditions particularly affect countries along the southern Mediterranean rim,including Algeria,which primarily focuses on pastoral and forage practices.This study investigates salinity tolerance and ecotypic variability in Vicia narbonensis L.,a fodder legume species recognized for its potential to reclaim marginal soils.Morphological,physiological,and biochemical responses were assessed in three ecotypes(eco2,eco9,and eco10)exposed to different salinity levels(low,moderate,and severe).The study was conducted using a completely randomized block design with three blocks per ecotype per dose.The results from the two-way analysis of variance demonstrate significant effects across nearly all attributes studied,revealing distinct ecotypic responses.These findings underscore variations in growth parameters,osmotic regulation mechanisms,and biochemical adjustments.The substantial diversity observed among these ecotypes in their response to salinity provides valuable insights for breeders addressing both agronomic and ecological challenges.Multivariate analyses,including Principal Component Analysis(PCA),revealed key variables distinguishing between ecotypes under salinity stress.Moreover,Classification based on Salinity Tolerance Indices(STI)further differentiated ecotypic performance with more precision,and this is because of the combination of the different parameters studied.These results open up new prospects for the development of strategies to improve the salinity tolerance of forage legumes.
基金supported by the National Natural Science Foundation of China(Nos.12205259 and 12147101)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)with No.G1323523064.
文摘In this study,we performed a systematic analysis of the multiplicity dependence of hadron production at mid-rapidity(|y|<0.5),ranging from the light to the charm sector in proton-proton(pp)collisions at√s=13 TeV.This study used a multi-phase transport(AMPT)model coupled with PYTHIA8 initial conditions.We investigated the baryon-to-meson and the strange-to-non-strange meson ratios varying with the charged particle density.By tuning the coalescence parameters,the AMPT model provides a reasonable description of the experimental data for the inclusive production of both light and charm hadrons,comparable to the string fragmentation model calculations with color reconnection effects.Additionally,we analyzed the relative production of hadrons by examining the self-normalized particle ratios as a function of the charged hadron density.Our findings suggest that parton evolution effects and the coalescence hadronization process in the AMPT model result in a strong flavor hierarchy in the multiplicity dependence of the baryon-to-meson ratio.Furthermore,our investigation of the p_(T) differential double ratio of the baryon-to-meson fraction between high-and low-multiplicity events revealed distinct modifications to the flavor associated baryon-to-meson ratio p_(T) shape in high-multiplicity events when comparing the coalescence hadronization model to the color reconnection model.These observations highlight the importance of understanding the hadronization process in high-energy pp collisions through comprehensive multiplicity-dependent multi-flavor analysis.
基金supported by the Major Innovation Project of Shandong Province, China (2022CXGC010605)the National Natural Science Foundation of China (32172518 and 32002023)+1 种基金the National Key R&D Program of China (2023YFD2301103)the Key R&D Projects in Ningxia Hui Autonomous Region, China (2022BBF02014)。
文摘Evaluating plant stress tolerance and screening key regulatory genes under the combined stresses of high temperature and drought are important for studying plant stress tolerance mechanisms. In this study, the drought tolerance of five grape varieties was evaluated under high-temperature conditions to screen key genes for further exploration of resistance mechanisms. By comparing and analysing the morphological characteristics and physiological indicators associated with the response of grapevines to drought stress and integrating them with the membership function to assess the strength of their drought tolerance, the order of drought tolerance was found to be as follows: 420A>110R>Cabernet Sauvignon(CS)>Fercal>188-08. To further analyse the mechanism of differences in drought tolerance, transcriptomic sequencing was performed on the drought-tolerant cultivar 420A, the drought-sensitive cultivar 188-08 and the control cultivar CS. The functional analysis of differential metabolic pathways indicated that the differentially expressed genes were enriched mainly in biological process category, that 420A had higher antioxidant activity. Furthermore, differentially expressed transcription factors were analyzed in five grape varieties. Genes like Vv AGL15, Vv LBD41, and Vv MYB86 showed close associations with drought tolerance,indicating their potential role in regulating drought tolerance and research significance.
基金National Natural Science Foundation of China(No.32171947 and No.31671699)which supported this research.
文摘Saline-alkali soil severely reduces the productivity of crops,including maize(Zea mays).Although several genes associated with saline-alkali tolerance have been identified in maize,the underlying regulatory mechanism remains elusive.Here,we report a direct link between colonization by arbuscular mycorrhizal fungi(AMF)and saline-alkali tolerance in maize.We identify s75,a natural maize mutant that cannot survive under moderate saline-alkali soil conditions or establish AM symbioses.The saline-alkali hypersensitive phenotype of s75 is caused by a 1340-bp deletion in Zm00001d033915,designated as ZmL75.This gene encodes a glycerol-3-phosphate acyltransferase localized in the endoplasmic reticulum,and is responsible for AMF colonization.ZmL75 expression levels in roots correspond with the root length colonization(RLC)rate during early vegetative development.Notably,the s75 mutant line shows a complete loss of AMF colonization,along with alterations in the diversity and structure of its root fungal microbiota.Conversely,overexpression of ZmL75 increases the RLC rate and enhances tolerance to saline-alkali soil conditions.These results suggest that ZmL75 is required for symbiosis with AMF,which directly improves saline-alkali tolerance.Our findings provide insights into maize-AMF interactions and offer a potential strategy for maize improvement.
基金the National Natural Science Foundation of China(Nos.22278415 and 52225309)Chinese Academy of Sciences(No.027GJHZ2022033GC).
文摘Environmentally friendly slow-release fertilizers are highly desired in sustainable agriculture.Encapsulating fertilizers can routinely achieve controlled releasing performances but suffers from short-term effectiveness or environmental unfriendliness.In this work,a bio-derived shellac incorporated with polydodecyl trimethoxysilane(SL-PDTMS)capsule was developed for long-term controlled releasing urea.Due to enhanced hydrophobicity and thus water resistance,the SL-PDTMS encapsulated urea fertilizer(SPEU)demonstrated a long-term effectiveness of 60 d,compared with SL encapsulated urea fertilizer(SEU,30 d)and pure urea fertilizer(U,5 min).In addition,SPEU showed a broad pH tolerance from 5.0 to 9.0,covering most various soil pH conditions.In the pot experiments,promoted growth of maize seedlings was observed after applying SPEU,rendering it promising as a high-performance controlled-released fertilizer.
基金the Fund of Science and Technology Innovation Project of Chinese Academy of Chinese Medical Sciences Project:Self-service Acupuncture Smoking Cessation Research and Development(No.CI2021A03506)Fund of Capital Health Development Special Research Project:Research on Development and Clinical Applicalion of Wrist Acupuncture Smoking Cessation Instrument(No.2022-1-4281)。
文摘OBJECTIVE:To observe the effect of different acupuncture frequencies on the abstinence rate which could be used as a reference for optimizing acupuncture cessation programs.METHODS:From July 2018 to June 2022,a total of 220 smokers were recruited based on inclusion criteria and randomly divided into the high-frequency acupuncture group(HF group,n=110):5 times a week from the 1st to the 4th week,from weeks 5 to 8,three times a week and the low-frequency acupuncture group(LF group,n=110):3 times a week from the 1st to the 4th week,from weeks 5 to 8,twice a week,then treated for 8 weeks and followup at 1 month in Beijing.RESULTS:In total,162 subjects completed the whole study with a drop-out rate of 20.45%.The expiratory CO point abstinence rate was HF group 53/110(48.18%)vs LF group 41/110(37.27%)in Week 8(P=0.102)and HF group 46/110(41.82%)vs LF group 45/110(40.91%)in Week 12(P=0.891)and the HF acupuncture and LF acupuncture were nearly equal in the 8-week abstinence rate.In addition,both HF and LF acupuncture significantly reduced Fagerstr?m test for nicotine dependence scale(FTND)scores(P<0.05),Minnesota nicotine withdrawal scale(MNWS)scores(P<0.05),and Brief Questionnaire of Smoking Urges scale(QSU-Brief)scores(P<0.05),but HF acupuncture showed some superiority over LF acupuncture in relieving patients'smoking cravings(P<0.05).CONCLUSIONS:The study initially showed that both high-frequency acupuncture and low-frequency acupuncture treatment were safe and effective on smoking cessation for 8 weeks,but high-frequency acupuncture was advantageous in reducing smoking cravings.More accurate acupuncture frequency needs to be validated through larger clinical studies to optimize acupuncture smoking cessation programs.
文摘Background:Globalization and increasing migration have amplified cultural diversity in healthcare services.This has rendered intercultural tolerance-a respectful and equity-based approach to differing values and beliefs-a necessity in nursing care.Although intercultural tolerance is recognized in the literature as a core component of cultural competence the prevalence of this attitude among nurses and its associated factors remain underexplored in clinical practice.Methods:This cross-sectional study was conducted between October 2020 and May 2021 in a public hospital in Istanbul.The population consisted of 2,096 nurses,and 767 of them voluntarily participated in the study via an online survey(response rate:36.6%).The data collection tool included sociodemographic variables,culture-oriented descriptive characteristics,and literature-based items on intercultural tolerance.A self-assessment scale from 1 to 10 was used to evaluate personal tolerance levels.The instrument was not subjected to psychometric validation;only a pilot study for clarity was conducted.Data were analyzed using descriptive statistics,independent group comparisons,and multiple linear regression.Power analysis indicated a minimum sample size of 175,confirming the adequacy of the sample.Results:The majority of participants reported high tolerance scores(M=8.2±1.5).Most nurses endorsed the right to equal healthcare(96.7%),respect for cultural diversity(94.3%),and empathy(91.7%).However,41.3%reported awareness of their own biases,and 45.1%experienced discomfort related to language differences.Regression analysis revealed that empathy,attentiveness to cultural differences(i.e.,avoiding identical treatment of all),and egalitarian intercultural attitudes positively predicted tolerance.In contrast,discomfort with unfamiliar languages,overconfidence in cultural knowledge,and structural factors such as the clinical unit were negatively associated with tolerance.Conclusion:Although nurses generally demonstrate positive attitudes toward intercultural tolerance,internal biases and institutional barriers continue to hinder its full expression.Empathy and self-awareness should be supported not only cognitively but also through emotional and behavioral interventions.Accordingly,the integration of structured cultural competence programs into nursing education,institutional support mechanisms,and pedagogical strategies for managing prejudice are strongly recommended.