Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,...Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.展开更多
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng...Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.展开更多
Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep...Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance.展开更多
Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an in...Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an invasive surgical treatment that modulates abnormal neural activity by implanting electrodes into specific brain areas followed by electrical stimulation.As an emerging therapeutic approach,deep brain stimulation shows significant promise as a potential new therapy for Alzheimer's disease.Here,we review the potential mechanisms and therapeutic effects of deep brain stimulation in the treatment of Alzheimer's disease based on existing clinical and basic research.In clinical studies,the most commonly targeted sites include the fornix,the nucleus basalis of Meynert,and the ventral capsule/ventral striatum.Basic research has found that the most frequently targeted areas include the fornix,nucleus basalis of Meynert,hippocampus,entorhinal cortex,and rostral intralaminar thalamic nucleus.All of these individual targets exhibit therapeutic potential for patients with Alzheimer's disease and associated mechanisms of action have been investigated.Deep brain stimulation may exert therapeutic effects on Alzheimer's disease through various mechanisms,including reducing the deposition of amyloid-β,activation of the cholinergic system,increasing the levels of neurotrophic factors,enhancing synaptic activity and plasticity,promoting neurogenesis,and improving glucose metabolism.Currently,clinical trials investigating deep brain stimulation for Alzheimer's disease remain insufficient.In the future,it is essential to focus on translating preclinical mechanisms into clinical trials.Furthermore,consecutive follow-up studies are needed to evaluate the long-term safety and efficacy of deep brain stimulation for Alzheimer's disease,including cognitive function,neuropsychiatric symptoms,quality of life and changes in Alzheimer's disease biomarkers.Researchers must also prioritize the initiation of multi-center clinical trials of deep brain stimulation with large sample sizes and target earlier therapeutic windows,such as the prodromal and even the preclinical stages of Alzheimer's disease.Adopting these approaches will permit the efficient exploration of more effective and safer deep brain stimulation therapies for patients with Alzheimer's disease.展开更多
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities...The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.展开更多
An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction...An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects.展开更多
Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters base...Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters based on the stable deep dynamics model. To enhance the performance of the controller, the dynamics model is optimized within the deep reinforcement learning(DRL) framework. Simulation results verify that the proposed method can reduce frequency deviation and improve active power responses.展开更多
Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensem...Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed.展开更多
Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small obje...Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small object detection a complex and demanding task.One effective approach to overcome these issues is the integration of multimodal image data to enhance detection capabilities.This paper proposes a novel small object detection method that utilizes three types of multimodal image combinations,such as Hyperspectral-Multispectral(HSMS),Hyperspectral-Synthetic Aperture Radar(HS-SAR),and HS-SAR-Digital Surface Model(HS-SAR-DSM).The detection process is done by the proposed Jaccard Deep Q-Net(JDQN),which integrates the Jaccard similarity measure with a Deep Q-Network(DQN)using regression modeling.To produce the final output,a Deep Maxout Network(DMN)is employed to fuse the detection results obtained from each modality.The effectiveness of the proposed JDQN is validated using performance metrics,such as accuracy,Mean Squared Error(MSE),precision,and Root Mean Squared Error(RMSE).Experimental results demonstrate that the proposed JDQN method outperforms existing approaches,achieving the highest accuracy of 0.907,a precision of 0.904,the lowest normalized MSE of 0.279,and a normalized RMSE of 0.528.展开更多
This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organi...This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organizations,institutions,publications,and key themes.We performed a search on theWeb of Science(WoS)database,focusing on Artificial Intelligence and Deepfakes,and filtered the results across 21 research areas,yielding 1412 articles.Using VOSviewer visualization tool,we analyzed thisWoS data through keyword co-occurrence graphs,emphasizing on four prominent research themes.Compared with existing bibliometric papers on deepfakes,this paper proceeds to identify and discuss some of the highly cited papers within these themes:deepfake detection,feature extraction,face recognition,and forensics.The discussion highlights key challenges and advancements in deepfake research.Furthermore,this paper also discusses pressing issues surrounding deepfakes such as security,regulation,and datasets.We also provide an analysis of another exhaustive search on Scopus database focusing solely on Deepfakes(while not excluding AI)revealing deep learning as the predominant keyword,underscoring AI’s central role in deepfake research.This comprehensive analysis,encompassing over 500 keywords from 8790 articles,uncovered a wide range of methods,implications,applications,concerns,requirements,challenges,models,tools,datasets,and modalities related to deepfakes.Finally,a discussion on recommendations for policymakers,researchers,and other stakeholders is also provided.展开更多
On February 20,2025,China National Petroleum Corporation announced that China's first ultra-deep scientific exploration well-Shenditake 1 Well-successfully reached a depth of 10910 m underground(Fig.1).Deep Earth ...On February 20,2025,China National Petroleum Corporation announced that China's first ultra-deep scientific exploration well-Shenditake 1 Well-successfully reached a depth of 10910 m underground(Fig.1).Deep Earth Towerke 1 Well is located in the heart of the Taklamakan Desert in the Xinjiang Uyghur Autonomous Region,within the territory of Shaya County.It has become the deepest vertical well in Asia and the second deepest in the world.The well has successively set five major engineering records:The deepest global tailpipe cementing,the deepest global cable imaging logging,the fastest global onshore drilling to exceed 10000 m,the deepest direct well drilling in Asia,and the deepest onshore coring in Asia.This marks another major breakthrough for China in the field of“Deep Earth”exploration,following its achievements in“Deep Space”and“Deep Sea.”展开更多
The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor...The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.展开更多
Automated classification of retinal fundus images is essential for identifying eye diseases,though there is earlier research on applying deep learning models designed especially for detecting tessellation in retinal f...Automated classification of retinal fundus images is essential for identifying eye diseases,though there is earlier research on applying deep learning models designed especially for detecting tessellation in retinal fundus images.This study classifies 4 classes of retinal fundus images with 3 diseased fundus images and 1 normal fundus image,by creating a refined VGG16 model to categorize fundus pictures into tessellated,normal,myopia,and choroidal neovascularization groups.The approach utilizes a VGG16 architecture that has been altered with unique fully connected layers and regularization using dropouts,along with data augmentation techniques(rotation,flip,and rescale)on a dataset of 302 photos.Training involves class weighting and critical callbacks(early halting,learning rate reduction,checkpointing)to maximize performance.Gains in accuracy(93.42%training,77.5%validation)and improved class-specific F1 scores are attained.Grad-CAM’s Explainable AI(XAI)highlights areas of the images that are important for each categorization,making it interpretable for better understanding of medical experts.These results highlight the model’s potential as a helpful diagnostic tool in ophthalmology,providing a clear and practical method for the early identification and categorization of retinal disorders,especially in cases such as tessellated fundus images.展开更多
This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We syste...This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We systematically evaluate key deep learning architectures including convolutional neural networks(CNNs),recurrent neural networks(RNNs),transformer-based models,and hybrid systems across critical tasks such as arrhythmia classification,seizure detection,and anomaly segmentation.The study dissects preprocessing techniques(e.g.,wavelet denoising,spectral normalization)and feature extraction strategies(time-frequency analysis,attention mechanisms),demonstrating their impact on model accuracy,noise robustness,and computational efficiency.Experimental results underscore the superiority of deep learning over traditional methods,particularly in automated feature extraction,real-time processing,cross-modal generalization,and achieving up to a 15%increase in classification accuracy and enhanced noise resilience across electrocardiogram(ECG),electroencephalogram(EEG),and electromyogram(EMG)signals.Performance is rigorously benchmarked using precision,recall,F1-scores,area under the receiver operating characteristic curve(AUC-ROC),and computational complexitymetrics,providing a unified framework for comparing model efficacy.Thesurvey addresses persistent challenges:synthetic data generationmitigates limited training samples,interpretability tools(e.g.,Gradient-weighted Class Activation Mapping(Grad-CAM),Shapley values)resolve model opacity,and federated learning ensures privacy-compliant deployments.Distinguished from prior reviews,this work offers a structured taxonomy of deep learning architectures,integrates emerging paradigms like transformers and domain-specific attention mechanisms,and evaluates preprocessing pipelines for spectral-temporal trade-offs.It advances the field by bridging technical advancements with clinical needs,such as scalability in real-world settings(e.g.,wearable devices)and regulatory alignment with theHealth Insurance Portability and Accountability Act(HIPAA)and General Data Protection Regulation(GDPR).By synthesizing technical rigor,ethical considerations,and actionable guidelines for model selection,this survey establishes a holistic reference for developing robust,interpretable biomedical artificial intelligence(AI)systems,accelerating their translation into personalized and equitable healthcare solutions.展开更多
基金supported by the Basic Science Research Program(2023R1A2C3004336,RS-202300243807)&Regional Leading Research Center(RS-202400405278)through the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIT)。
文摘Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring,clinical diagnosis,and robotic applications.Nevertheless,it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility,adhesion,self-healing,and environmental robustness with excellent sensing metrics.Herein,we report a multifunctional,anti-freezing,selfadhesive,and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes(CoN CNT)embedded in a polyvinyl alcohol-gelatin(PVA/GLE)matrix.Fabricated using a binary solvent system of water and ethylene glycol(EG),the CoN CNT/PVA/GLE organogel exhibits excellent flexibility,biocompatibility,and temperature tolerance with remarkable environmental stability.Electrochemical impedance spectroscopy confirms near-stable performance across a broad humidity range(40%-95%RH).Freeze-tolerant conductivity under sub-zero conditions(-20℃)is attributed to the synergistic role of CoN CNT and EG,preserving mobility and network integrity.The Co N CNT/PVA/GLE organogel sensor exhibits high sensitivity of 5.75 k Pa^(-1)in the detection range from 0 to 20 k Pa,ideal for subtle biomechanical motion detection.A smart human-machine interface for English letter recognition using deep learning achieved 98%accuracy.The organogel sensor utility was extended to detect human gestures like finger bending,wrist motion,and throat vibration during speech.
文摘Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.
基金supported by the National Natural Science Foundation of China[grant number 62376217]the Young Elite Scientists Sponsorship Program by CAST[grant number 2023QNRC001]the Joint Research Project for Meteorological Capacity Improvement[grant number 24NLTSZ003]。
文摘Deep learning-based methods have become alternatives to traditional numerical weather prediction systems,offering faster computation and the ability to utilize large historical datasets.However,the application of deep learning to medium-range regional weather forecasting with limited data remains a significant challenge.In this work,three key solutions are proposed:(1)motivated by the need to improve model performance in data-scarce regional forecasting scenarios,the authors innovatively apply semantic segmentation models,to better capture spatiotemporal features and improve prediction accuracy;(2)recognizing the challenge of overfitting and the inability of traditional noise-based data augmentation methods to effectively enhance model robustness,a novel learnable Gaussian noise mechanism is introduced that allows the model to adaptively optimize perturbations for different locations,ensuring more effective learning;and(3)to address the issue of error accumulation in autoregressive prediction,as well as the challenge of learning difficulty and the lack of intermediate data utilization in one-shot prediction,the authors propose a cascade prediction approach that effectively resolves these problems while significantly improving model forecasting performance.The method achieves a competitive result in The East China Regional AI Medium Range Weather Forecasting Competition.Ablation experiments further validate the effectiveness of each component,highlighting their contributions to enhancing prediction performance.
基金supported by the Capital Fund for Health Improvement and Research,No.2022-2-2048(to WZ)the National Natural Science Foundation of China,No.81970992(to WZ)+3 种基金Capital Clinical Characteristic Application Research,No.Z121107001012161(to WZ)the Natural Science Foundation of Beijing,No.7082032(to WZ)the Key Technology R&D Program of Beijing Municipal Education Commission,No.KZ201610025030(to WZ)Project of Scientific and Technological Development of Traditional Chinese Medicine in Beijing,No.JJ2018-48(to WZ)。
文摘Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an invasive surgical treatment that modulates abnormal neural activity by implanting electrodes into specific brain areas followed by electrical stimulation.As an emerging therapeutic approach,deep brain stimulation shows significant promise as a potential new therapy for Alzheimer's disease.Here,we review the potential mechanisms and therapeutic effects of deep brain stimulation in the treatment of Alzheimer's disease based on existing clinical and basic research.In clinical studies,the most commonly targeted sites include the fornix,the nucleus basalis of Meynert,and the ventral capsule/ventral striatum.Basic research has found that the most frequently targeted areas include the fornix,nucleus basalis of Meynert,hippocampus,entorhinal cortex,and rostral intralaminar thalamic nucleus.All of these individual targets exhibit therapeutic potential for patients with Alzheimer's disease and associated mechanisms of action have been investigated.Deep brain stimulation may exert therapeutic effects on Alzheimer's disease through various mechanisms,including reducing the deposition of amyloid-β,activation of the cholinergic system,increasing the levels of neurotrophic factors,enhancing synaptic activity and plasticity,promoting neurogenesis,and improving glucose metabolism.Currently,clinical trials investigating deep brain stimulation for Alzheimer's disease remain insufficient.In the future,it is essential to focus on translating preclinical mechanisms into clinical trials.Furthermore,consecutive follow-up studies are needed to evaluate the long-term safety and efficacy of deep brain stimulation for Alzheimer's disease,including cognitive function,neuropsychiatric symptoms,quality of life and changes in Alzheimer's disease biomarkers.Researchers must also prioritize the initiation of multi-center clinical trials of deep brain stimulation with large sample sizes and target earlier therapeutic windows,such as the prodromal and even the preclinical stages of Alzheimer's disease.Adopting these approaches will permit the efficient exploration of more effective and safer deep brain stimulation therapies for patients with Alzheimer's disease.
文摘The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders.
基金financially supported by the National Science and Technology Major Project——Deep Earth Probe and Mineral Resources Exploration(No.2024ZD1003701)the National Key R&D Program of China(No.2022YFC2905004)。
文摘An image processing and deep learning method for identifying different types of rock images was proposed.Preprocessing,such as rock image acquisition,gray scaling,Gaussian blurring,and feature dimensionality reduction,was conducted to extract useful feature information and recognize and classify rock images using Tensor Flow-based convolutional neural network(CNN)and Py Qt5.A rock image dataset was established and separated into workouts,confirmation sets,and test sets.The framework was subsequently compiled and trained.The categorization approach was evaluated using image data from the validation and test datasets,and key metrics,such as accuracy,precision,and recall,were analyzed.Finally,the classification model conducted a probabilistic analysis of the measured data to determine the equivalent lithological type for each image.The experimental results indicated that the method combining deep learning,Tensor Flow-based CNN,and Py Qt5 to recognize and classify rock images has an accuracy rate of up to 98.8%,and can be successfully utilized for rock image recognition.The system can be extended to geological exploration,mine engineering,and other rock and mineral resource development to more efficiently and accurately recognize rock samples.Moreover,it can match them with the intelligent support design system to effectively improve the reliability and economy of the support scheme.The system can serve as a reference for supporting the design of other mining and underground space projects.
基金supported in part by the National Natural Science Foundation of China(62033005,62273270)the Natural Science Foundation of Shaanxi Province(2023JC-XJ17)
文摘Dear Editor,This letter proposes a deep synchronization control(DSC) method to synchronize grid-forming converters with power grids. The method involves constructing a novel controller for grid-forming converters based on the stable deep dynamics model. To enhance the performance of the controller, the dynamics model is optimized within the deep reinforcement learning(DRL) framework. Simulation results verify that the proposed method can reduce frequency deviation and improve active power responses.
基金funded by Taif University,Saudi Arabia,project No.(TU-DSPP-2024-263).
文摘Deep learning algorithms have been rapidly incorporated into many different applications due to the increase in computational power and the availability of massive amounts of data.Recently,both deep learning and ensemble learning have been used to recognize underlying structures and patterns from high-level features to make predictions/decisions.With the growth in popularity of deep learning and ensemble learning algorithms,they have received significant attention from both scientists and the industrial community due to their superior ability to learn features from big data.Ensemble deep learning has exhibited significant performance in enhancing learning generalization through the use of multiple deep learning algorithms.Although ensemble deep learning has large quantities of training parameters,which results in time and space overheads,it performs much better than traditional ensemble learning.Ensemble deep learning has been successfully used in several areas,such as bioinformatics,finance,and health care.In this paper,we review and investigate recent ensemble deep learning algorithms and techniques in health care domains,medical imaging,health care data analytics,genomics,diagnosis,disease prevention,and drug discovery.We cover several widely used deep learning algorithms along with their architectures,including deep neural networks(DNNs),convolutional neural networks(CNNs),recurrent neural networks(RNNs),and generative adversarial networks(GANs).Common healthcare tasks,such as medical imaging,electronic health records,and genomics,are also demonstrated.Furthermore,in this review,the challenges inherent in reducing the burden on the healthcare system are discussed and explored.Finally,future directions and opportunities for enhancing healthcare model performance are discussed.
文摘Accurate detection of small objects is critically important in high-stakes applications such as military reconnaissance and emergency rescue.However,low resolution,occlusion,and background interference make small object detection a complex and demanding task.One effective approach to overcome these issues is the integration of multimodal image data to enhance detection capabilities.This paper proposes a novel small object detection method that utilizes three types of multimodal image combinations,such as Hyperspectral-Multispectral(HSMS),Hyperspectral-Synthetic Aperture Radar(HS-SAR),and HS-SAR-Digital Surface Model(HS-SAR-DSM).The detection process is done by the proposed Jaccard Deep Q-Net(JDQN),which integrates the Jaccard similarity measure with a Deep Q-Network(DQN)using regression modeling.To produce the final output,a Deep Maxout Network(DMN)is employed to fuse the detection results obtained from each modality.The effectiveness of the proposed JDQN is validated using performance metrics,such as accuracy,Mean Squared Error(MSE),precision,and Root Mean Squared Error(RMSE).Experimental results demonstrate that the proposed JDQN method outperforms existing approaches,achieving the highest accuracy of 0.907,a precision of 0.904,the lowest normalized MSE of 0.279,and a normalized RMSE of 0.528.
文摘This paper provides a comprehensive bibliometric exposition on deepfake research,exploring the intersection of artificial intelligence and deepfakes as well as international collaborations,prominent researchers,organizations,institutions,publications,and key themes.We performed a search on theWeb of Science(WoS)database,focusing on Artificial Intelligence and Deepfakes,and filtered the results across 21 research areas,yielding 1412 articles.Using VOSviewer visualization tool,we analyzed thisWoS data through keyword co-occurrence graphs,emphasizing on four prominent research themes.Compared with existing bibliometric papers on deepfakes,this paper proceeds to identify and discuss some of the highly cited papers within these themes:deepfake detection,feature extraction,face recognition,and forensics.The discussion highlights key challenges and advancements in deepfake research.Furthermore,this paper also discusses pressing issues surrounding deepfakes such as security,regulation,and datasets.We also provide an analysis of another exhaustive search on Scopus database focusing solely on Deepfakes(while not excluding AI)revealing deep learning as the predominant keyword,underscoring AI’s central role in deepfake research.This comprehensive analysis,encompassing over 500 keywords from 8790 articles,uncovered a wide range of methods,implications,applications,concerns,requirements,challenges,models,tools,datasets,and modalities related to deepfakes.Finally,a discussion on recommendations for policymakers,researchers,and other stakeholders is also provided.
文摘On February 20,2025,China National Petroleum Corporation announced that China's first ultra-deep scientific exploration well-Shenditake 1 Well-successfully reached a depth of 10910 m underground(Fig.1).Deep Earth Towerke 1 Well is located in the heart of the Taklamakan Desert in the Xinjiang Uyghur Autonomous Region,within the territory of Shaya County.It has become the deepest vertical well in Asia and the second deepest in the world.The well has successively set five major engineering records:The deepest global tailpipe cementing,the deepest global cable imaging logging,the fastest global onshore drilling to exceed 10000 m,the deepest direct well drilling in Asia,and the deepest onshore coring in Asia.This marks another major breakthrough for China in the field of“Deep Earth”exploration,following its achievements in“Deep Space”and“Deep Sea.”
文摘The precise identification of quartz minerals is crucial in mineralogy and geology due to their widespread occurrence and industrial significance.Traditional methods of quartz identification in thin sections are labor-intensive and require significant expertise,often complicated by the coexistence of other minerals.This study presents a novel approach leveraging deep learning techniques combined with hyperspectral imaging to automate the identification process of quartz minerals.The utilizied four advanced deep learning models—PSPNet,U-Net,FPN,and LinkNet—has significant advancements in efficiency and accuracy.Among these models,PSPNet exhibited superior performance,achieving the highest intersection over union(IoU)scores and demonstrating exceptional reliability in segmenting quartz minerals,even in complex scenarios.The study involved a comprehensive dataset of 120 thin sections,encompassing 2470 hyperspectral images prepared from 20 rock samples.Expert-reviewed masks were used for model training,ensuring robust segmentation results.This automated approach not only expedites the recognition process but also enhances reliability,providing a valuable tool for geologists and advancing the field of mineralogical analysis.
基金support from the"Intelligent Recognition Industry Service Center"as part of the Featured Areas Research Center Program under the Higher Education Sprout Project by the Ministry of Education(MOE)in Taiwan,and the National Science and Technology Council,Taiwan,under grants[113-2622-E-224-002]and[113-2221-E-224-041]support was provided by Isuzu Optics Corporation.
文摘Automated classification of retinal fundus images is essential for identifying eye diseases,though there is earlier research on applying deep learning models designed especially for detecting tessellation in retinal fundus images.This study classifies 4 classes of retinal fundus images with 3 diseased fundus images and 1 normal fundus image,by creating a refined VGG16 model to categorize fundus pictures into tessellated,normal,myopia,and choroidal neovascularization groups.The approach utilizes a VGG16 architecture that has been altered with unique fully connected layers and regularization using dropouts,along with data augmentation techniques(rotation,flip,and rescale)on a dataset of 302 photos.Training involves class weighting and critical callbacks(early halting,learning rate reduction,checkpointing)to maximize performance.Gains in accuracy(93.42%training,77.5%validation)and improved class-specific F1 scores are attained.Grad-CAM’s Explainable AI(XAI)highlights areas of the images that are important for each categorization,making it interpretable for better understanding of medical experts.These results highlight the model’s potential as a helpful diagnostic tool in ophthalmology,providing a clear and practical method for the early identification and categorization of retinal disorders,especially in cases such as tessellated fundus images.
基金The Natural Sciences and Engineering Research Council of Canada(NSERC)funded this review study.
文摘This reviewpresents a comprehensive technical analysis of deep learning(DL)methodologies in biomedical signal processing,focusing on architectural innovations,experimental validation,and evaluation frameworks.We systematically evaluate key deep learning architectures including convolutional neural networks(CNNs),recurrent neural networks(RNNs),transformer-based models,and hybrid systems across critical tasks such as arrhythmia classification,seizure detection,and anomaly segmentation.The study dissects preprocessing techniques(e.g.,wavelet denoising,spectral normalization)and feature extraction strategies(time-frequency analysis,attention mechanisms),demonstrating their impact on model accuracy,noise robustness,and computational efficiency.Experimental results underscore the superiority of deep learning over traditional methods,particularly in automated feature extraction,real-time processing,cross-modal generalization,and achieving up to a 15%increase in classification accuracy and enhanced noise resilience across electrocardiogram(ECG),electroencephalogram(EEG),and electromyogram(EMG)signals.Performance is rigorously benchmarked using precision,recall,F1-scores,area under the receiver operating characteristic curve(AUC-ROC),and computational complexitymetrics,providing a unified framework for comparing model efficacy.Thesurvey addresses persistent challenges:synthetic data generationmitigates limited training samples,interpretability tools(e.g.,Gradient-weighted Class Activation Mapping(Grad-CAM),Shapley values)resolve model opacity,and federated learning ensures privacy-compliant deployments.Distinguished from prior reviews,this work offers a structured taxonomy of deep learning architectures,integrates emerging paradigms like transformers and domain-specific attention mechanisms,and evaluates preprocessing pipelines for spectral-temporal trade-offs.It advances the field by bridging technical advancements with clinical needs,such as scalability in real-world settings(e.g.,wearable devices)and regulatory alignment with theHealth Insurance Portability and Accountability Act(HIPAA)and General Data Protection Regulation(GDPR).By synthesizing technical rigor,ethical considerations,and actionable guidelines for model selection,this survey establishes a holistic reference for developing robust,interpretable biomedical artificial intelligence(AI)systems,accelerating their translation into personalized and equitable healthcare solutions.