As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and s...As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF.展开更多
Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven...Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).展开更多
PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can b...PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.展开更多
Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have...Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.展开更多
Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via...Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via a two-DOF mechanism to provide flexible output. In order to make the feasibility clear, this paper studies theoretically the dynamic characteristics of this hybrid-driven mechanical system.Firstly,the dynamics model of the whole electromechanical system is set up by combining dynamic equations of DC motors with those of two-DOF nine-bar mechanism deduced by the Lagrange′s formula. Secondly through the numerical solution with the fourth Runge-Kutta, computer simulation about the dynamics is done, which shows that the designed and optimized hybrid-driven precision press is feasible in theory. These provide theoretical basis for later experimental research.展开更多
This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior with...This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior without relying on constitutive equations in the deteriorated region.This approach contributes to advancing the field of intrinsic equation-free mechanics.The methodology combines measured strain fields with data-model coupling driven algorithms.The gradient and Canny operators are utilized to process the strain field data,enabling the determination of the deterioration region's location.Meanwhile,an adaptive model building method is proposed for constructing coupling driven models.To address the issue of unknown datasets during computation,a dataset updating strategy based on a differential evolutionary algorithm is introduced.The resulting optimal dataset is then used to generate stress field results.Validation against finite element method calculations demonstrates the accuracy of the proposed method in obtaining full-field stresses in specimens with local degradation behavior.展开更多
The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to sol...The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to solve. This method has no convergence,flexible workspace and singularity of the mechanism problem. Through this method,we don’ t need any curve to fit the trajectory point. Using MATLAB program to calculate,the computation time can be reduced to less than 3% of the original. Finally,an example is given to illustrate the method which is meanwhile compared with the traditional five bar design method.展开更多
Fast and accurate transient stability analysis is crucial to power system operation.With high penetration level of wind power resources,practical dynamic security region(PDSR)with hyper plane expression has outstandin...Fast and accurate transient stability analysis is crucial to power system operation.With high penetration level of wind power resources,practical dynamic security region(PDSR)with hyper plane expression has outstanding advantages in situational awareness and series of optimization problems.The precondition of obtaining accurate PDSR boundary is to locate sufficient points around the boundary(critical points).Therefore,this paper proposes a space division and Wasserstein generative adversarial network with gra-dient penalty(WGAN-GP)based fast generation method of PDSR boundary.First,the typical differential topological characterizations of dynamic security region(DSR)provide strong theoretical foundation that the interior of DSR is hole-free and the boundaries of DSR are tight and knot-free.Then,the space division method is proposed to calculate critical operation area where the PDSR boundary is located,tremen-dously compressing the search space to locate critical points and improving the confidence level of boundary fitting result.Furthermore,the WGAN-GP model is utilized to fast obtain large number of criti-cal points based on learning the data distribution of the small training set aforementioned.Finally,the PDSR boundary with hyperplanes is fitted by the least square method.The case study is tested on the Institute of Electrical and Electronics Engineers(IEEE)39-bus system and the results verify the accuracy and efficiency of the proposed method.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grants(52275471 and 52120105008)the Beijing Outstanding Young Scientist Program,and the New Cornerstone Science Foundation through the XPLORER PRIZE.
文摘As pivotal supporting technologies for smart manufacturing and digital engineering,model-based and data-driven methods have been widely applied in many industrial fields,such as product design,process monitoring,and smart maintenance.While promising,both methods have issues that need to be addressed.For example,model-based methods are limited by low computational accuracy and a high computational burden,and data-driven methods always suffer from poor interpretability and redundant features.To address these issues,the concept of data-model fusion(DMF)emerges as a promising solution.DMF involves integrating model-based methods with data-driven methods by incorporating big data into model-based methods or embedding relevant domain knowledge into data-driven methods.Despite growing efforts in the field of DMF,a unanimous definition of DMF remains elusive,and a general framework of DMF has been rarely discussed.This paper aims to address this gap by providing a thorough overview and categorization of both data-driven methods and model-based methods.Subsequently,this paper also presents the definition and categorization of DMF and discusses the general framework of DMF.Moreover,the primary seven applications of DMF are reviewed within the context of smart manufacturing and digital engineering.Finally,this paper directs the future directions of DMF.
基金supported by the National Natural Science Foundation of China(Grant No.U2241263)the fellowship of China Postdoctoral Science Foundation(Grant No.2024M750310).
文摘Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).
基金supported by the National Natural Science Foundation of China(Grant Nos. 50835006 and 51005161)the Science & Technology Support Planning Foundation of Tianjin(Grant No. 09ZCKFGX03000)the Natural Science Foundation of Tianjin(Grant No. 09JCZDJC23400)
文摘PETREL, a winged hybrid-driven underwater glider is a novel and practical marine survey platform which combines the features of legacy underwater glider and conventional AUV (autonomous underwater vehicle). It can be treated as a multi-rigid-body system with a floating base and a particular hydrodynamic profile. In this paper, theorems on linear and angular momentum are used to establish the dynamic equations of motion of each rigid body and the effect of translational and rotational motion of internal masses on the attitude control are taken into consideration. In addition, due to the unique external shape with fixed wings and deflectable rudders and the dual-drive operation in thrust and glide modes, the approaches of building dynamic model of conventional AUV and hydrodynamic model of submarine are introduced, and the tailored dynamic equations of the hybrid glider are formulated. Moreover, the behaviors of motion in glide and thrust operation are analyzed based on the simulation and the feasibility of the dynamic model is validated by data from lake field trials.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51475319 and 51722508)the National Key R&D Plan(Grant No.2016YFC0301100)Aoshan Talents Program of Qingdao National Laboratory for Marine Science and Technology
文摘Hybrid-driven underwater glider is a new type of tmmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steady- state operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulations.and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.
文摘Different from conventional mechanical systems with single degree of freedom (DOF), the main idea of the system of hybrid-driven precision press is to combine the motion of a constant speed motor with a servomotor via a two-DOF mechanism to provide flexible output. In order to make the feasibility clear, this paper studies theoretically the dynamic characteristics of this hybrid-driven mechanical system.Firstly,the dynamics model of the whole electromechanical system is set up by combining dynamic equations of DC motors with those of two-DOF nine-bar mechanism deduced by the Lagrange′s formula. Secondly through the numerical solution with the fourth Runge-Kutta, computer simulation about the dynamics is done, which shows that the designed and optimized hybrid-driven precision press is feasible in theory. These provide theoretical basis for later experimental research.
基金supported by the Fundamental Research Fund for the Central Universities(Grant No.BLX202226)。
文摘This paper presents a method for measuring stress fields within the framework of coupled data models,aimed at determining stress fields in isotropic material structures exhibiting localized deterioration behavior without relying on constitutive equations in the deteriorated region.This approach contributes to advancing the field of intrinsic equation-free mechanics.The methodology combines measured strain fields with data-model coupling driven algorithms.The gradient and Canny operators are utilized to process the strain field data,enabling the determination of the deterioration region's location.Meanwhile,an adaptive model building method is proposed for constructing coupling driven models.To address the issue of unknown datasets during computation,a dataset updating strategy based on a differential evolutionary algorithm is introduced.The resulting optimal dataset is then used to generate stress field results.Validation against finite element method calculations demonstrates the accuracy of the proposed method in obtaining full-field stresses in specimens with local degradation behavior.
基金supported by National Innovation Training Project(201710959044)Anhui Province Quality Engineering Project(2016jyxm0336)Anhui Province Educational Department University Natural Science Research Project(KJ2017A523)
文摘The concept of virtual slider crank mechanism is proposed and decoupled to obtain parameters of controllable five bar mechanism without any principle error for any given trajectory. The model is simple and easy to solve. This method has no convergence,flexible workspace and singularity of the mechanism problem. Through this method,we don’ t need any curve to fit the trajectory point. Using MATLAB program to calculate,the computation time can be reduced to less than 3% of the original. Finally,an example is given to illustrate the method which is meanwhile compared with the traditional five bar design method.
基金funded in part by the National Key Research and Development Program of China(2020YFB0905900)in part by Science and Technology Project of State Grid Corporation of China(SGCC)The Key Technologies for Electric Internet of Things(SGTJDK00DWJS2100223).
文摘Fast and accurate transient stability analysis is crucial to power system operation.With high penetration level of wind power resources,practical dynamic security region(PDSR)with hyper plane expression has outstanding advantages in situational awareness and series of optimization problems.The precondition of obtaining accurate PDSR boundary is to locate sufficient points around the boundary(critical points).Therefore,this paper proposes a space division and Wasserstein generative adversarial network with gra-dient penalty(WGAN-GP)based fast generation method of PDSR boundary.First,the typical differential topological characterizations of dynamic security region(DSR)provide strong theoretical foundation that the interior of DSR is hole-free and the boundaries of DSR are tight and knot-free.Then,the space division method is proposed to calculate critical operation area where the PDSR boundary is located,tremen-dously compressing the search space to locate critical points and improving the confidence level of boundary fitting result.Furthermore,the WGAN-GP model is utilized to fast obtain large number of criti-cal points based on learning the data distribution of the small training set aforementioned.Finally,the PDSR boundary with hyperplanes is fitted by the least square method.The case study is tested on the Institute of Electrical and Electronics Engineers(IEEE)39-bus system and the results verify the accuracy and efficiency of the proposed method.