In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD...In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD),with its emphasis on cross-functional teamwork,concurrent engineering,and data-driven decision-making,has been widely recognized for enhancing R&D efficiency and product quality.However,the unique characteristics of SOEs pose challenges to the effective implementation of IPD.The advancement of big data and artificial intelligence technologies offers new opportunities for optimizing IPD R&D management through data-driven decision-making models.This paper constructs and validates a data-driven decision-making model tailored to the IPD R&D management of SOEs.By integrating data mining,machine learning,and other advanced analytical techniques,the model serves as a scientific and efficient decision-making tool.It aids SOEs in optimizing R&D resource allocation,shortening product development cycles,reducing R&D costs,and improving product quality and innovation.Moreover,this study contributes to a deeper theoretical understanding of the value of data-driven decision-making in the context of IPD.展开更多
The electricity industry has witnessed increasing challenges in power system operation and rapid developments of artificial intelligence technologies in the last decades.In this context,studying the approach of securi...The electricity industry has witnessed increasing challenges in power system operation and rapid developments of artificial intelligence technologies in the last decades.In this context,studying the approach of security-constrained unit commitment(SCUC)deci-sionmaking with high adaptability and precision is of great importance.This paper proposes an improved da-tadriven deep learning(DL)approach,following the sample coding and Sequence to Sequence(Seq2Seq)technique.First,an encoding and decoding strategy is utilized for high-dimensional sample matrix dimension compression.A DL SCUC decision model based on a Seq2Seq network with gated recurrent units as neurons is then constructed,and the mapping between load and unit on/off scheme is established through massive data from historical scheduling.Numerical simulation results based on the IEEE 118-bus test system demonstrate the correctness and effectiveness of the proposed approach.展开更多
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati...The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.展开更多
To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforce...To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.展开更多
Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pP...Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.展开更多
Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective to...Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.展开更多
BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpfu...BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.展开更多
Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues le...Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues leading to those decisions.Methods Semi-structured personal interviews were used to collect data.Seven family members of patients with malignant brain tumors were selected to participate in the study by purposive sampling method from June to August 2022 in the Patient Family Association of Japan.Responses were content analyzed to explore the relationship between the content of decisions regarding“treatment policies”and“daily care”and the cues influencing those decisions.Semi-structured interviews were analyzed by using thematic analysis.Results The contents of proxy decisions regarding“treatment policies”included implementation,interruption,and termination of initial treatments,free medical treatments,use of respirators,and end-of-life sedation and included six cues:treatment policies suggested by the primary physician,information and knowledge about the disease and treatment obtained by the family from limited resources,perceived life threat from symptom worsening,words and reactions from the patient regarding treatment,patient’s personality and way of life inferred from their treatment preferences,family’s thoughts and values hoping for better treatment for the patient.Decisions for“daily care”included meal content and methods,excretion,mobility,maintaining cleanliness,rehabilitation,continuation or resignation from work,treatment settings(outpatient or inpatient),and ways to spend time outside and included seven cues:words and thoughts from the patient about their way of life,patient’s reactions and life history inferred from their preferred way of living,things the patient can do to maintain daily life and roles,awareness of the increasing inability to do things in daily life,family’s underlying thoughts and values about how to spend the remaining time,approval from family members regarding the care setting,advice from medical professionals on living at home.Conclusions For“treatment policies,”guidelines from medical professionals were a key cue,while for“daily care,”the small signs from the patients in their daily lives served as cues for proxy decision-making.This may be due to the lack of information available to families and the limited time available for discussion with the patient.Families of patients with malignant brain tumors repeatedly use multiple cues to make proxy decision-making under high uncertainty.Therefore,nurses supporting proxy decision-making should assess the family’s situation and provide cues that facilitate informed and confident decisions.展开更多
Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studie...Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studies on collective behavior in small animals such as fish and insects are well-established,similar research on large wild animals remains challenging due to the limited availability of sufficient and systematic field data.Here,we aimed to explore the collective decision-making pattern and its sexual difference for the dimorphic Tibetan antelopes Pantholops hodgsonii(chiru)in Xizang Autonomous Region,China,by analyzing individual leadership distribution,as well as the joining process,considering factors such as calving stages and joining ranks.The distinct correlations of decision participants’ratio with group size and decision duration underscore the trade-off between accuracy and speed in decision-making.Male antelopes display a more democratic decision-making pattern,while females exhibit more prompt responses after calving at an early stage.This study uncovers a partially shared decision-making strategy among Tibetan antelopes,suggesting flexible self-organization in group decision processes aligned with animal life cycle progression.展开更多
BACKGROUND Mesalamine is the recommended first-line treatment for inducing and maintaining remission in mild-to-moderate ulcerative colitis(UC).However,adherence in real-world settings is frequently suboptimal.Encoura...BACKGROUND Mesalamine is the recommended first-line treatment for inducing and maintaining remission in mild-to-moderate ulcerative colitis(UC).However,adherence in real-world settings is frequently suboptimal.Encouraging collaborative patient-provider relationships may foster better adherence and patient outcomes.AIM To quantify the association between patient participation in treatment decisionmaking and adherence to oral mesalamine in UC.METHODS We conducted a 12-month,prospective,non-interventional cohort study at 113 gastroenterology practices in Germany.Eligible patients were aged≥18 years,had a confirmed UC diagnosis,had no prior mesalamine treatment,and provided informed consent.At the first visit,we collected data on demographics,clinical characteristics,patient preference for mesalamine formulation(tablets or granules),and disease knowledge.Self-reported adherence and disease activity were assessed at all visits.Correlation analyses and logistic regression were used to examine associations between adherence and various factors.RESULTS Of the 605 consecutively screened patients,520 were included in the study.The median age was 41 years(range:18-91),with a male-to-female ratio of 1.1:1.0.Approximately 75%of patients reported good adherence at each study visit.In correlation analyses,patient participation in treatment decision-making was significantly associated with better adherence across all visits(P=0.04).In the regression analysis at 12 months,this association was evident among patients who both preferred and received prolonged-release mesalamine granules(odds ratio=2.73,P=0.001).Patients reporting good adherence also experienced significant improvements in disease activity over 12 months(P<0.001).CONCLUSION Facilitating patient participation in treatment decisions and accommodating medication preferences may improve adherence to mesalamine.This may require additional effort but has the potential to improve long-term management of UC.展开更多
Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt pro...Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.展开更多
Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements...Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability.展开更多
Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularl...Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.展开更多
This study examined the effects of design thinking pedagogy on undergraduates’career decision-making selfefficacy and employability in career education.Using a quasi-experimental design,Chinese college students(N=93)...This study examined the effects of design thinking pedagogy on undergraduates’career decision-making selfefficacy and employability in career education.Using a quasi-experimental design,Chinese college students(N=93)were participants in two wings.The experimental group(n=47)received the design thinking pedagogy,while the control group(n=46)followed the regularly teacher-centered method.The students completed the career decision-making self-efficacy scale and employability scale before and after the intervention.Independent samples t-test results showed that design thinking pedagogy significantly improves students’career decision-making self-efficacy and employability.The ANCOVA results showed that the pretest scores of career decision-making self-efficacy and employability had no significant association with the experimental intervention.There was no interaction between the treatment and pretest scores.It would seem that experimental design thinking pedagogy implemented in career guidance courses has little effect compared to the usual course presentation.Nonetheless,prospects for the implementation of design thinking-guided learning activities to support interdisciplinary learning for improved higher education and career development outcomes need further exploration.展开更多
In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential r...In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.展开更多
In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelli...In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.展开更多
Volunteer teams provide valuable support after large-scale disasters.However,excessive volunteer participation poses challenges for formal operations.Therefore,an appropriate decision-making method is required to quic...Volunteer teams provide valuable support after large-scale disasters.However,excessive volunteer participation poses challenges for formal operations.Therefore,an appropriate decision-making method is required to quickly determine the number of volunteers required after a disaster.This study proposes a data-driven decision-making(D^(3)M)method for typhoon disaster volunteerism that can effectively predict the number of volunteers required.Disaster data from actual cases were gathered,analyzed,and preprocessed to prepare the model.Feature selection,D^(3)M model training and optimization,and model validation were performed to fine-tune the volunteer participant predictions.Using data from an actual typhoon in the Philippines,the rationality and efficacy of the method were verified through a comparative analysis of the experimental results.The proposed method learns from disaster-event data to quickly predict the number of volunteers needed,such that it not only reasonably allocates volunteers to assist professional teams in rescue but also avoids secondary problems caused by an overwhelming response.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
文摘In the rapidly evolving technological landscape,state-owned enterprises(SOEs)encounter significant challenges in sustaining their competitiveness through efficient R&D management.Integrated Product Development(IPD),with its emphasis on cross-functional teamwork,concurrent engineering,and data-driven decision-making,has been widely recognized for enhancing R&D efficiency and product quality.However,the unique characteristics of SOEs pose challenges to the effective implementation of IPD.The advancement of big data and artificial intelligence technologies offers new opportunities for optimizing IPD R&D management through data-driven decision-making models.This paper constructs and validates a data-driven decision-making model tailored to the IPD R&D management of SOEs.By integrating data mining,machine learning,and other advanced analytical techniques,the model serves as a scientific and efficient decision-making tool.It aids SOEs in optimizing R&D resource allocation,shortening product development cycles,reducing R&D costs,and improving product quality and innovation.Moreover,this study contributes to a deeper theoretical understanding of the value of data-driven decision-making in the context of IPD.
基金supported by the National Natural Sci-ence Foundation of China(No.62233006).
文摘The electricity industry has witnessed increasing challenges in power system operation and rapid developments of artificial intelligence technologies in the last decades.In this context,studying the approach of security-constrained unit commitment(SCUC)deci-sionmaking with high adaptability and precision is of great importance.This paper proposes an improved da-tadriven deep learning(DL)approach,following the sample coding and Sequence to Sequence(Seq2Seq)technique.First,an encoding and decoding strategy is utilized for high-dimensional sample matrix dimension compression.A DL SCUC decision model based on a Seq2Seq network with gated recurrent units as neurons is then constructed,and the mapping between load and unit on/off scheme is established through massive data from historical scheduling.Numerical simulation results based on the IEEE 118-bus test system demonstrate the correctness and effectiveness of the proposed approach.
文摘The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFE0117100)National Science Foundation of China(Grant No.52102468,52325212)Fundamental Research Funds for the Central Universities。
文摘To solve problems of poor security guarantee and insufficient training efficiency in the conventional reinforcement learning methods for decision-making,this study proposes a hybrid framework to combine deep reinforcement learning with rule-based decision-making methods.A risk assessment model for lane-change maneuvers considering uncertain predictions of surrounding vehicles is established as a safety filter to improve learning efficiency while correcting dangerous actions for safety enhancement.On this basis,a Risk-fused DDQN is constructed utilizing the model-based risk assessment and supervision mechanism.The proposed reinforcement learning algorithm sets up a separate experience buffer for dangerous trials and punishes such actions,which is shown to improve the sampling efficiency and training outcomes.Compared with conventional DDQN methods,the proposed algorithm improves the convergence value of cumulated reward by 7.6%and 2.2%in the two constructed scenarios in the simulation study and reduces the number of training episodes by 52.2%and 66.8%respectively.The success rate of lane change is improved by 57.3%while the time headway is increased at least by 16.5%in real vehicle tests,which confirms the higher training efficiency,scenario adaptability,and security of the proposed Risk-fused DDQN.
基金supported by the Deanship of Graduate Studies and Scientific Research at Qassim University(QU-APC-2024-9/1).
文摘Due to the numerous variables to take into account as well as the inherent ambiguity and uncertainty,evaluating educational institutions can be difficult.The concept of a possibility Pythagorean fuzzy hypersoft set(pPyFHSS)is more flexible in this regard than other theoretical fuzzy set-like models,even though some attempts have been made in the literature to address such uncertainties.This study investigates the elementary notions of pPyFHSS including its set-theoretic operations union,intersection,complement,OR-and AND-operations.Some results related to these operations are also modified for pPyFHSS.Additionally,the similarity measures between pPyFHSSs are formulated with the assistance of numerical examples and results.Lastly,an intelligent decision-assisted mechanism is developed with the proposal of a robust algorithm based on similarity measures for solving multi-attribute decision-making(MADM)problems.A case study that helps the decision-makers assess the best educational institution is discussed to validate the suggested system.The algorithmic results are compared with the most pertinent model to evaluate the adaptability of pPyFHSS,as it generalizes the classical possibility fuzzy set-like theoretical models.Similarly,while considering significant evaluating factors,the flexibility of pPyFHSS is observed through structural comparison.
文摘Accurate medical diagnosis,which involves identifying diseases based on patient symptoms,is often hindered by uncertainties in data interpretation and retrieval.Advanced fuzzy set theories have emerged as effective tools to address these challenges.In this paper,new mathematical approaches for handling uncertainty in medical diagnosis are introduced using q-rung orthopair fuzzy sets(q-ROFS)and interval-valued q-rung orthopair fuzzy sets(IVq-ROFS).Three aggregation operators are proposed in our methodologies:the q-ROF weighted averaging(q-ROFWA),the q-ROF weighted geometric(q-ROFWG),and the q-ROF weighted neutrality averaging(qROFWNA),which enhance decision-making under uncertainty.These operators are paired with ranking methods such as the similarity measure,score function,and inverse score function to improve the accuracy of disease identification.Additionally,the impact of varying q-rung values is explored through a sensitivity analysis,extending the analysis beyond the typical maximum value of 3.The Basic Uncertain Information(BUI)method is employed to simulate expert opinions,and aggregation operators are used to combine these opinions in a group decisionmaking context.Our results provide a comprehensive comparison of methodologies,highlighting their strengths and limitations in diagnosing diseases based on uncertain patient data.
文摘BACKGROUND Understanding a patient's clinical status and setting priorities for their care are two aspects of the constantly changing process of clinical decision-making.One analytical technique that can be helpful in uncertain situations is clinical judgment.Clinicians must deal with contradictory information,lack of time to make decisions,and long-term factors when emergencies occur.AIM To examine the ethical issues healthcare professionals faced during the coronavirus disease 2019(COVID-19)pandemic and the factors affecting clinical decision-making.METHODS This pilot study,which means it was a preliminary investigation to gather information and test the feasibility of a larger investigation was conducted over 6 months and we invited responses from clinicians worldwide who managed patients with COVID-19.The survey focused on topics related to their professional roles and personal relationships.We examined five core areas influencing critical care decision-making:Patients'personal factors,family-related factors,informed consent,communication and media,and hospital administrative policies on clinical decision-making.The collected data were analyzed using the χ^(2) test for categorical variables.RESULTS A total of 102 clinicians from 23 specialties and 17 countries responded to the survey.Age was a significant factor in treatment planning(n=88)and ventilator access(n=78).Sex had no bearing on how decisions were made.Most doctors reported maintaining patient confidentiality regarding privacy and informed consent.Approximately 50%of clinicians reported a moderate influence of clinical work,with many citing it as one of the most important factors affecting their health and relationships.Clinicians from developing countries had a significantly higher score for considering a patient's financial status when creating a treatment plan than their counterparts from developed countries.Regarding personal experiences,some respondents noted that treatment plans and preferences changed from wave to wave,and that there was a rapid turnover of studies and evidence.Hospital and government policies also played a role in critical decision-making.Rather than assessing the appropriateness of treatment,some doctors observed that hospital policies regarding medications were driven by patient demand.CONCLUSION Factors other than medical considerations frequently affect management choices.The disparity in treatment choices,became more apparent during the pandemic.We highlight the difficulties and contradictions between moral standards and the realities physicians encountered during this medical emergency.False information,large patient populations,and limited resources caused problems for clinicians.These factors impacted decision-making,which,in turn,affected patient care and healthcare staff well-being.
文摘Objectives This study aimed to clarify the relationship between the content of proxy decision-making made by families of patients with malignant brain tumors regarding treatment policies and daily care and the cues leading to those decisions.Methods Semi-structured personal interviews were used to collect data.Seven family members of patients with malignant brain tumors were selected to participate in the study by purposive sampling method from June to August 2022 in the Patient Family Association of Japan.Responses were content analyzed to explore the relationship between the content of decisions regarding“treatment policies”and“daily care”and the cues influencing those decisions.Semi-structured interviews were analyzed by using thematic analysis.Results The contents of proxy decisions regarding“treatment policies”included implementation,interruption,and termination of initial treatments,free medical treatments,use of respirators,and end-of-life sedation and included six cues:treatment policies suggested by the primary physician,information and knowledge about the disease and treatment obtained by the family from limited resources,perceived life threat from symptom worsening,words and reactions from the patient regarding treatment,patient’s personality and way of life inferred from their treatment preferences,family’s thoughts and values hoping for better treatment for the patient.Decisions for“daily care”included meal content and methods,excretion,mobility,maintaining cleanliness,rehabilitation,continuation or resignation from work,treatment settings(outpatient or inpatient),and ways to spend time outside and included seven cues:words and thoughts from the patient about their way of life,patient’s reactions and life history inferred from their preferred way of living,things the patient can do to maintain daily life and roles,awareness of the increasing inability to do things in daily life,family’s underlying thoughts and values about how to spend the remaining time,approval from family members regarding the care setting,advice from medical professionals on living at home.Conclusions For“treatment policies,”guidelines from medical professionals were a key cue,while for“daily care,”the small signs from the patients in their daily lives served as cues for proxy decision-making.This may be due to the lack of information available to families and the limited time available for discussion with the patient.Families of patients with malignant brain tumors repeatedly use multiple cues to make proxy decision-making under high uncertainty.Therefore,nurses supporting proxy decision-making should assess the family’s situation and provide cues that facilitate informed and confident decisions.
基金supported by the National Natural Science Foundation of China(Grant no.32101237)the China Postdoctoral Science Foundation(Grant no.2021M691522)+1 种基金the National Key Research and Development Program(Grant no.2022YFC3202104)the Tibet Major Science and Technology Project(Grant no.XZ201901-GA-06).
文摘Group living is widespread across diverse taxa,and the mechanisms underlying collective decision-making in contexts of variable role division are critical for understanding the dynamics of group stability.While studies on collective behavior in small animals such as fish and insects are well-established,similar research on large wild animals remains challenging due to the limited availability of sufficient and systematic field data.Here,we aimed to explore the collective decision-making pattern and its sexual difference for the dimorphic Tibetan antelopes Pantholops hodgsonii(chiru)in Xizang Autonomous Region,China,by analyzing individual leadership distribution,as well as the joining process,considering factors such as calving stages and joining ranks.The distinct correlations of decision participants’ratio with group size and decision duration underscore the trade-off between accuracy and speed in decision-making.Male antelopes display a more democratic decision-making pattern,while females exhibit more prompt responses after calving at an early stage.This study uncovers a partially shared decision-making strategy among Tibetan antelopes,suggesting flexible self-organization in group decision processes aligned with animal life cycle progression.
文摘BACKGROUND Mesalamine is the recommended first-line treatment for inducing and maintaining remission in mild-to-moderate ulcerative colitis(UC).However,adherence in real-world settings is frequently suboptimal.Encouraging collaborative patient-provider relationships may foster better adherence and patient outcomes.AIM To quantify the association between patient participation in treatment decisionmaking and adherence to oral mesalamine in UC.METHODS We conducted a 12-month,prospective,non-interventional cohort study at 113 gastroenterology practices in Germany.Eligible patients were aged≥18 years,had a confirmed UC diagnosis,had no prior mesalamine treatment,and provided informed consent.At the first visit,we collected data on demographics,clinical characteristics,patient preference for mesalamine formulation(tablets or granules),and disease knowledge.Self-reported adherence and disease activity were assessed at all visits.Correlation analyses and logistic regression were used to examine associations between adherence and various factors.RESULTS Of the 605 consecutively screened patients,520 were included in the study.The median age was 41 years(range:18-91),with a male-to-female ratio of 1.1:1.0.Approximately 75%of patients reported good adherence at each study visit.In correlation analyses,patient participation in treatment decision-making was significantly associated with better adherence across all visits(P=0.04).In the regression analysis at 12 months,this association was evident among patients who both preferred and received prolonged-release mesalamine granules(odds ratio=2.73,P=0.001).Patients reporting good adherence also experienced significant improvements in disease activity over 12 months(P<0.001).CONCLUSION Facilitating patient participation in treatment decisions and accommodating medication preferences may improve adherence to mesalamine.This may require additional effort but has the potential to improve long-term management of UC.
基金Project supported by the National Natural Science Foundation of China (Grant No. 72174121)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Soft Science Research Project of Shanghai (Grant No. 22692112600)。
文摘Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.
基金Supported by National Key R&D Program of China(Grant No.2022YFB2503203)National Natural Science Foundation of China(Grant No.U1964206).
文摘Decision-making of connected and automated vehicles(CAV)includes a sequence of driving maneuvers that improve safety and efficiency,characterized by complex scenarios,strong uncertainty,and high real-time requirements.Deep reinforcement learning(DRL)exhibits excellent capability of real-time decision-making and adaptability to complex scenarios,and generalization abilities.However,it is arduous to guarantee complete driving safety and efficiency under the constraints of training samples and costs.This paper proposes a Mixture of Expert method(MoE)based on Soft Actor-Critic(SAC),where the upper-level discriminator dynamically decides whether to activate the lower-level DRL expert or the heuristic expert based on the features of the input state.To further enhance the performance of the DRL expert,a buffer zone is introduced in the reward function,preemptively applying penalties before insecure situations occur.In order to minimize collision and off-road rates,the Intelligent Driver Model(IDM)and Minimizing Overall Braking Induced by Lane changes(MOBIL)strategy are designed by heuristic experts.Finally,tested in typical simulation scenarios,MOE shows a 13.75%improvement in driving efficiency compared with the traditional DRL method with continuous action space.It ensures high safety with zero collision and zero off-road rates while maintaining high adaptability.
文摘Bridge networks are essential components of civil infrastructure,supporting communities by delivering vital services and facilitating economic activities.However,bridges are vulnerable to natural disasters,particularly earthquakes.To develop an effective disaster management strategy,it is critical to identify reliable,robust,and efficient indicators.In this regard,Life-Cycle Cost(LCC)and Resilience(R)serve as key indicators to assist decision-makers in selecting the most effective disaster risk reduction plans.This study proposes an innova-tive LCC-R optimization framework to identify the most optimal retrofit strategies for bridge networks facing hazardous events during their lifespan.The proposed framework employs both single-and multi-objective opti-mization techniques to identify retrofit strategies that maximize the R index while minimizing the LCC for the under-study bridge networks.The considered retrofit strategies include various options such as different mate-rials(steel,CFRP,and GFRP),thicknesses,arrangements,and timing of retrofitting actions.The first step in the proposed framework involves constructing fragility curves by performing a series of nonlinear time-history incre-mental dynamic analyses for each case.In the subsequent step,the seismic resilience surfaces are calculated using the obtained fragility curves and assuming a recovery function.Next,the LCC is evaluated according to the pro-posed formulation for multiple seismic occurrences,which incorporates the effects of complete and incomplete repair actions resulting from previous multiple seismic events.For optimization purposes,the Non-Dominated Sorting Genetic Algorithm II(NSGA-II)evolutionary algorithm efficiently identifies the Pareto front to represent the optimal set of solutions.The study presents the most effective retrofit strategies for an illustrative bridge network,providing a comprehensive discussion and insights into the resulting tactical approaches.The findings underscore that the methodologies employed lead to logical and actionable retrofit strategies,paving the way for enhanced resilience and cost-effectiveness in bridge network management against seismic hazards.
基金supported by Hanshan Normal University Research Initiation Program(QD2024214).
文摘This study examined the effects of design thinking pedagogy on undergraduates’career decision-making selfefficacy and employability in career education.Using a quasi-experimental design,Chinese college students(N=93)were participants in two wings.The experimental group(n=47)received the design thinking pedagogy,while the control group(n=46)followed the regularly teacher-centered method.The students completed the career decision-making self-efficacy scale and employability scale before and after the intervention.Independent samples t-test results showed that design thinking pedagogy significantly improves students’career decision-making self-efficacy and employability.The ANCOVA results showed that the pretest scores of career decision-making self-efficacy and employability had no significant association with the experimental intervention.There was no interaction between the treatment and pretest scores.It would seem that experimental design thinking pedagogy implemented in career guidance courses has little effect compared to the usual course presentation.Nonetheless,prospects for the implementation of design thinking-guided learning activities to support interdisciplinary learning for improved higher education and career development outcomes need further exploration.
文摘In this paper,a robust and consistent COVID-19 emergency decision-making approach is proposed based on q-rung linear diophantine fuzzy set(q-RLDFS),differential evolutionary(DE)optimization principles,and evidential reasoning(ER)methodology.The proposed approach uses q-RLDFS in order to represent the evaluating values of the alternatives corresponding to the attributes.DE optimization is used to obtain the optimal weights of the attributes,and ER methodology is used to compute the aggregated q-rung linear diophantine fuzzy values(q-RLDFVs)of each alternative.Then the score values of alternatives are computed based on the aggregated q-RLDFVs.An alternative with the maximum score value is selected as a better one.The applicability of the proposed approach has been illustrated in COVID-19 emergency decision-making system and sustainable energy planning management.Moreover,we have validated the proposed approach with a numerical example.Finally,a comparative study is provided with the existing models,where the proposed approach is found to be robust to perform better and consistent in uncertain environments.
基金supported by the National Natural Science Foundation of China(Grant No.52179105)China Postdoctoral Science Foundation(Grant No.2024M762193)。
文摘In tunnel construction,tunnel boring machine(TBM)tunnelling typically relies on manual experience with sub-optimal control parameters,which can easily lead to inefficiency and high costs.This study proposed an intelligent decision-making method for TBM tunnelling control parameters based on multiobjective optimization(MOO).First,the effective TBM operation dataset is obtained through data preprocessing of the Songhua River(YS)tunnel project in China.Next,the proposed method begins with developing machine learning models for predicting TBM tunnelling performance parameters(i.e.total thrust and cutterhead torque),rock mass classification,and hazard risks(i.e.tunnel collapse and shield jamming).Then,considering three optimal objectives,(i.e.,penetration rate,rock-breaking energy consumption,and cutterhead hob wear),the MOO framework and corresponding mathematical expression are established.The Pareto optimal front is solved using DE-NSGA-II algorithm.Finally,the optimal control parameters(i.e.,advance rate and cutterhead rotation speed)are obtained by the satisfactory solution determination criterion,which can balance construction safety and efficiency with satisfaction.Furthermore,the proposed method is validated through 50 cases of TBM tunnelling,showing promising potential of application.
基金The authors acknowledge financial support from the National Social Science Foundation of China(Grant#:19BGL016).
文摘Volunteer teams provide valuable support after large-scale disasters.However,excessive volunteer participation poses challenges for formal operations.Therefore,an appropriate decision-making method is required to quickly determine the number of volunteers required after a disaster.This study proposes a data-driven decision-making(D^(3)M)method for typhoon disaster volunteerism that can effectively predict the number of volunteers required.Disaster data from actual cases were gathered,analyzed,and preprocessed to prepare the model.Feature selection,D^(3)M model training and optimization,and model validation were performed to fine-tune the volunteer participant predictions.Using data from an actual typhoon in the Philippines,the rationality and efficacy of the method were verified through a comparative analysis of the experimental results.The proposed method learns from disaster-event data to quickly predict the number of volunteers needed,such that it not only reasonably allocates volunteers to assist professional teams in rescue but also avoids secondary problems caused by an overwhelming response.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.