Version 4(v4) of the Extended Reconstructed Sea Surface Temperature(ERSST) dataset is compared with its precedent, the widely used version 3b(v3b). The essential upgrades applied to v4 lead to remarkable differences i...Version 4(v4) of the Extended Reconstructed Sea Surface Temperature(ERSST) dataset is compared with its precedent, the widely used version 3b(v3b). The essential upgrades applied to v4 lead to remarkable differences in the characteristics of the sea surface temperature(SST) anomaly(SSTa) in both the temporal and spatial domains. First, the largest discrepancy of the global mean SSTa values around the 1940 s is due to ship-observation corrections made to reconcile observations from buckets and engine intake thermometers. Second, differences in global and regional mean SSTa values between v4 and v3b exhibit a downward trend(around-0.032℃ per decade) before the 1940s, an upward trend(around 0.014℃ per decade) during the period of 1950–2015, interdecadal oscillation with one peak around the 1980s, and two troughs during the 1960s and 2000s, respectively. This does not derive from treatments of the polar or the other data-void regions, since the difference of the SSTa does not share the common features. Third, the spatial pattern of the ENSO-related variability of v4 exhibits a wider but weaker cold tongue in the tropical region of the Pacific Ocean compared with that of v3b, which could be attributed to differences in gap-filling assumptions since the latter features satellite observations whereas the former features in situ ones. This intercomparison confirms that the structural uncertainty arising from underlying assumptions on the treatment of diverse SST observations even in the same SST product family is the main source of significant SST differences in the temporal domain. Why this uncertainty introduces artificial decadal oscillations remains unknown.展开更多
A model intercomparison in terms of surface air temperature annual cycle amplitude-phase characteristics (SAT AC APC) is performed. The models included in the intercomparison belong to two groups: five atmospheric mod...A model intercomparison in terms of surface air temperature annual cycle amplitude-phase characteristics (SAT AC APC) is performed. The models included in the intercomparison belong to two groups: five atmospheric models with prescribed sea surface temperature and sea ice cover and four coupled models forced by the atmospheric abundances of anthropogenic constituents (in total six coupled model simulations). Over land, the models, simulating higher than observed time averaged SAT, also tend to simulate smaller than observed amplitude of its annual and semiannual harmonics and (outside the Tropics) later-than-observed spring and autumn moments. The models with larger (smaller) time averaged amplitudes of annual and semiannual harmonics also tend to simulate larger (smaller) interannual standard deviations. Over the oceans, the coupled models with larger interannual standard deviations of annual mean SAT tend to simulate larger interannual standard deviations of both annual and semiannual SAT harmonics amplitudes. Most model errors are located in the belts 60°–70°N and 60°–70°S and over Antarctica. These errors are larger for those coupled models which do not employ dynamical modules for sea ice. No systematic differences are found in the simulated time averaged fields of the surface air temperature annual cycle characteristics for atmospheric models on one hand and for the coupled models on the other. But the coupled models generally simulate interannual variability of SAT AC APC better than the atmospheric models (which tend to underestimate it). For the coupled models, the results are not very sensitive to the choice of the particular scenario of anthropogenic forcing. There is a strong linear positive relationship between the model simulated time averaged semiannual SAT harmonics amplitude and interannual standard deviation of annual mean SAT. It is stronger over the tropical oceans and is weaker in the extratropics. In the tropical oceanic areas, it is stronger for the coupled than for the atmospheric models.展开更多
Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set compr...Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set comprising the Arctic region. This study compares the temperature trends in several surface, satellite and reanalysis data sets. We demonstrate large differences in the 1979-2002 temperature trends. Data sets disagree on the magnitude of the trends as well as on their seasonal, zonal and vertical pattern. It was found that the surface temperature trends are stronger than the trends in the tropospheric temperature for each latitude band north of 50?N for each month except for the months during the ice-melting season. These results emphasize that the conclusions of climate studies drawn on the basis of a single data set analysis should be treated with caution as they may be affected by the artificial biases in data.展开更多
基金supported by the National Key Basic Research and Development Plan (No.2015CB953900)the Natural Science Foundation of China (Nos.41330960 and 41776032)
文摘Version 4(v4) of the Extended Reconstructed Sea Surface Temperature(ERSST) dataset is compared with its precedent, the widely used version 3b(v3b). The essential upgrades applied to v4 lead to remarkable differences in the characteristics of the sea surface temperature(SST) anomaly(SSTa) in both the temporal and spatial domains. First, the largest discrepancy of the global mean SSTa values around the 1940 s is due to ship-observation corrections made to reconcile observations from buckets and engine intake thermometers. Second, differences in global and regional mean SSTa values between v4 and v3b exhibit a downward trend(around-0.032℃ per decade) before the 1940s, an upward trend(around 0.014℃ per decade) during the period of 1950–2015, interdecadal oscillation with one peak around the 1980s, and two troughs during the 1960s and 2000s, respectively. This does not derive from treatments of the polar or the other data-void regions, since the difference of the SSTa does not share the common features. Third, the spatial pattern of the ENSO-related variability of v4 exhibits a wider but weaker cold tongue in the tropical region of the Pacific Ocean compared with that of v3b, which could be attributed to differences in gap-filling assumptions since the latter features satellite observations whereas the former features in situ ones. This intercomparison confirms that the structural uncertainty arising from underlying assumptions on the treatment of diverse SST observations even in the same SST product family is the main source of significant SST differences in the temporal domain. Why this uncertainty introduces artificial decadal oscillations remains unknown.
文摘A model intercomparison in terms of surface air temperature annual cycle amplitude-phase characteristics (SAT AC APC) is performed. The models included in the intercomparison belong to two groups: five atmospheric models with prescribed sea surface temperature and sea ice cover and four coupled models forced by the atmospheric abundances of anthropogenic constituents (in total six coupled model simulations). Over land, the models, simulating higher than observed time averaged SAT, also tend to simulate smaller than observed amplitude of its annual and semiannual harmonics and (outside the Tropics) later-than-observed spring and autumn moments. The models with larger (smaller) time averaged amplitudes of annual and semiannual harmonics also tend to simulate larger (smaller) interannual standard deviations. Over the oceans, the coupled models with larger interannual standard deviations of annual mean SAT tend to simulate larger interannual standard deviations of both annual and semiannual SAT harmonics amplitudes. Most model errors are located in the belts 60°–70°N and 60°–70°S and over Antarctica. These errors are larger for those coupled models which do not employ dynamical modules for sea ice. No systematic differences are found in the simulated time averaged fields of the surface air temperature annual cycle characteristics for atmospheric models on one hand and for the coupled models on the other. But the coupled models generally simulate interannual variability of SAT AC APC better than the atmospheric models (which tend to underestimate it). For the coupled models, the results are not very sensitive to the choice of the particular scenario of anthropogenic forcing. There is a strong linear positive relationship between the model simulated time averaged semiannual SAT harmonics amplitude and interannual standard deviation of annual mean SAT. It is stronger over the tropical oceans and is weaker in the extratropics. In the tropical oceanic areas, it is stronger for the coupled than for the atmospheric models.
文摘Arctic region is experiencing strong warming and related changes in the state of sea ice, permafrost, tundra, marine environment and terrestrial ecosystems. These changes are found in any climatological data set comprising the Arctic region. This study compares the temperature trends in several surface, satellite and reanalysis data sets. We demonstrate large differences in the 1979-2002 temperature trends. Data sets disagree on the magnitude of the trends as well as on their seasonal, zonal and vertical pattern. It was found that the surface temperature trends are stronger than the trends in the tropospheric temperature for each latitude band north of 50?N for each month except for the months during the ice-melting season. These results emphasize that the conclusions of climate studies drawn on the basis of a single data set analysis should be treated with caution as they may be affected by the artificial biases in data.