DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expres...DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.展开更多
Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based...Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based models for classifying cancer types using machine learning techniques. By applying Log2 normalization to gene expression data and conducting Wilcoxon rank sum tests, the researchers employed various classifiers and Incremental Feature Selection (IFS) strategies. The study culminated in two optimized models using the XGBoost classifier, comprising 10 and 74 genes respectively. The 10-gene model, due to its simplicity, is proposed for easier clinical implementation, whereas the 74-gene model exhibited superior performance in terms of Specificity, AUC (Area Under the Curve), and Precision. These models were evaluated based on their sensitivity, AUC, and specificity, aiming to achieve high sensitivity and AUC while maintaining reasonable specificity.展开更多
DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we presen...DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we present Fs-LSA (F-score based Learning Search Algorithm), a novel gene selection algorithm designed to enhance the precision and efficiency of target gene identification from microarray data for cancer classification. This algorithm is divided into two phases: the first leverages F-score values to prioritize and select feature genes with the most significant differential expression;the second phase introduces our Learning Search Algorithm (LSA), which harnesses swarm intelligence to identify the optimal subset among the remaining genes. Inspired by human social learning, LSA integrates historical data and collective intelligence for a thorough search, with a dynamic control mechanism that balances exploration and refinement, thereby enhancing the gene selection process. We conducted a rigorous validation of Fs-LSA’s performance using eight publicly available cancer microarray expression datasets. Fs-LSA achieved accuracy, precision, sensitivity, and F1-score values of 0.9932, 0.9923, 0.9962, and 0.994, respectively. Comparative analyses with state-of-the-art algorithms revealed Fs-LSA’s superior performance in terms of simplicity and efficiency. Additionally, we validated the algorithm’s efficacy independently using glioblastoma data from GEO and TCGA databases. It was significantly superior to those of the comparison algorithms. Importantly, the driver genes identified by Fs-LSA were instrumental in developing a predictive model as an independent prognostic indicator for glioblastoma, underscoring Fs-LSA’s transformative potential in genomics and personalized medicine.展开更多
Gene expression data represents a condition matrix where each rowrepresents the gene and the column shows the condition. Micro array used todetect gene expression in lab for thousands of gene at a time. Genes encode p...Gene expression data represents a condition matrix where each rowrepresents the gene and the column shows the condition. Micro array used todetect gene expression in lab for thousands of gene at a time. Genes encode proteins which in turn will dictate the cell function. The production of messengerRNA along with processing the same are the two main stages involved in the process of gene expression. The biological networks complexity added with thevolume of data containing imprecision and outliers increases the challenges indealing with them. Clustering methods are hence essential to identify the patternspresent in massive gene data. Many techniques involve hierarchical, partitioning,grid based, density based, model based and soft clustering approaches for dealingwith the gene expression data. Understanding the gene regulation and other usefulinformation from this data can be possible only through effective clustering algorithms. Though many methods are discussed in the literature, we concentrate onproviding a soft clustering approach for analyzing the gene expression data. Thepopulation elements are grouped based on the fuzziness principle and a degree ofmembership is assigned to all the elements. An improved Fuzzy clustering byLocal Approximation of Memberships (FLAME) is proposed in this workwhich overcomes the limitations of the other approaches while dealing with thenon-linear relationships and provide better segregation of biological functions.展开更多
In bioinformatics applications,examination of microarray data has received significant interest to diagnose diseases.Microarray gene expression data can be defined by a massive searching space that poses a primary cha...In bioinformatics applications,examination of microarray data has received significant interest to diagnose diseases.Microarray gene expression data can be defined by a massive searching space that poses a primary challenge in the appropriate selection of genes.Microarray data classification incorporates multiple disciplines such as bioinformatics,machine learning(ML),data science,and pattern classification.This paper designs an optimal deep neural network based microarray gene expression classification(ODNN-MGEC)model for bioinformatics applications.The proposed ODNN-MGEC technique performs data normalization process to normalize the data into a uniform scale.Besides,improved fruit fly optimization(IFFO)based feature selection technique is used to reduce the high dimensionality in the biomedical data.Moreover,deep neural network(DNN)model is applied for the classification of microarray gene expression data and the hyperparameter tuning of the DNN model is carried out using the Symbiotic Organisms Search(SOS)algorithm.The utilization of IFFO and SOS algorithms pave the way for accomplishing maximum gene expression classification outcomes.For examining the improved outcomes of the ODNN-MGEC technique,a wide ranging experimental analysis is made against benchmark datasets.The extensive comparison study with recent approaches demonstrates the enhanced outcomes of the ODNN-MGEC technique in terms of different measures.展开更多
For making better use of nucleic acid resources of Gossypium hirsutum, a data-mining method was used to identify putative genes responsive to various abiotic stresses in G. hirsutum. Based on the compiled database inc...For making better use of nucleic acid resources of Gossypium hirsutum, a data-mining method was used to identify putative genes responsive to various abiotic stresses in G. hirsutum. Based on the compiled database including genes involved in abiotic stress response in Arabidopsis thaliana and the comprehensive analysis tool of GENEVESTIGATOR v3, 826 genes up-regulated or down-regulated significantly in roots or leaves during salt or cold treatment in Arabidopsis were identified. As compared to these 826 Arabidopsis genes annotated, 38 homologous expressed sequence tags (ESTs) from G. hirsutum were selected randomly and their expression patterns were studied using a quantitative real-time reverse transcription-polymerase chain reaction method. Among these 38 ESTs, about 55% of the genes (21 of 38) were different in response to ABA between cotton and Arabidopsis, whereas 70% of genes had similar responses to cold and salt treatments, and some of them which had not been characterized in Arabidopsis are now being investigated in gene function studies. According to these results, this approach of analyzing ESTs appears effective in large-scale identification of cotton genes involved in abiotic stress and might be adopted to determine gene functions in various biologic processes in cotton.展开更多
Gibberellins are an important class of plant hormones.They play an important regulatory role in all stages of growth and development of higher plants.The use of mutants to study gibberellin metabolism and signal trans...Gibberellins are an important class of plant hormones.They play an important regulatory role in all stages of growth and development of higher plants.The use of mutants to study gibberellin metabolism and signal transduction pathways is currently a research hotspot.This article takes the data of Affymetrix chips of rice as an example,bioinformatics method was used to study rice SLR1 mutant and mine differentially expressed wild-type genes,thus exploring the expression regulation network of gibberellin signaling pathway-related genes.展开更多
In this paper, a similarity measure between genes with protein-protein interactions is pro-posed. The chip-chip data are converted into the same form of gene expression data with pear-son correlation as its similarity...In this paper, a similarity measure between genes with protein-protein interactions is pro-posed. The chip-chip data are converted into the same form of gene expression data with pear-son correlation as its similarity measure. On the basis of the similarity measures of protein- protein interaction data and chip-chip data, the combined dissimilarity measure is defined. The combined distance measure is introduced into K-means method, which can be considered as an improved K-means method. The improved K-means method and other three clustering methods are evaluated by a real dataset. Per-formance of these methods is assessed by a prediction accuracy analysis through known gene annotations. Our results show that the improved K-means method outperforms other clustering methods. The performance of the improved K-means method is also tested by varying the tuning coefficients of the combined dissimilarity measure. The results show that it is very helpful and meaningful to incorporate het-erogeneous data sources in clustering gene expression data, and those coefficients for the genome-wide or completed data sources should be given larger values when constructing the combined dissimilarity measure.展开更多
The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pr...The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- sequencing count data to a continuous variable or continue to work with count data. For each data type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis of data distribution and structure, are a discussion worth. In this review, open questions regarding RNA-sequencing data nature are discussed and highlighted, indicating important future research topics in statistics that should be addressed for a better analysis of already available and new appearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed data is presented. This comparison indicates that transforming RNA-seq count data seems appropriate, at least for differential expression detection.展开更多
A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system.This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray data prov...A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system.This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray data provide information on differences between microarray-based and experiment-based gene expression analyses. According to microarray data, several genes exhibit increased expression(fold change) but they are weakly expressed in experimental studies(based on morphology, protein and mRNA levels). In contrast, some genes are weakly expressed in microarray data and highly expressed in experimental studies;such genes may represent future target genes in Schwann cell studies. These studies allow us to learn about additional genes that could be used to achieve targeted results from experimental studies. In the current big data study by retrieving more than 5000 scientific articles from PubMed or NCBI, Google Scholar, and Google, 1016(up-and downregulated) genes were determined to be related to Schwann cells. However,no experiment was performed in the laboratory; rather, the present study is part of a big data analysis. Our study will contribute to our understanding of Schwann cell biology by aiding in the identification of genes.Based on a comparative analysis of all microarray data, we conclude that the microarray could be a good tool for predicting the expression and intensity of different genes of interest in actual experiments.展开更多
基因调控网络是基于微阵列基因表达数据,对基因之间表达关系依赖程度的一种仿真或重建。从基因表达数据挖掘基因之间存在的一定程度因果关系,对重构基因调控网络具有十分重要的意义。提出一种基于频繁原子序列关联熵的基因关联分析算法...基因调控网络是基于微阵列基因表达数据,对基因之间表达关系依赖程度的一种仿真或重建。从基因表达数据挖掘基因之间存在的一定程度因果关系,对重构基因调控网络具有十分重要的意义。提出一种基于频繁原子序列关联熵的基因关联分析算法,通过基因关联熵有效识别基因之间的因果关系,并采用启发式搜索策略构建基因关联贝叶斯调控网络(gene association based Bayesian regulatory,GABR)。与基因贝叶斯网络描述基因表达水平值之间依赖关系不同,GABR是一种基因序列贝叶斯网络,基因关联分析对象是生物组织样本的基因表达值排序并置换为基因列下标所形成的序列。算法的优势在于基因变量取值原子序列,该基因为原子序列的结果,基因关联熵以及条件概率分布的计算更符合基因表达数据分析的生物本质特征。ALARM网络模拟数据的实验结果表明,基因关联分析算法性能明显优于同类算法。在酵母菌微阵列基因数据GDS2267和小鼠胚胎基因GSE76118等GEO数据集进行实验,测试结果表明GABR方法重构的基因调控网络具有较高的有效性和鲁棒性。展开更多
文摘DNA microarray technology is an extremely effective technique for studying gene expression patterns in cells, and the main challenge currently faced by this technology is how to analyze the large amount of gene expression data generated. To address this, this paper employs a mixed-effects model to analyze gene expression data. In terms of data selection, 1176 genes from the white mouse gene expression dataset under two experimental conditions were chosen, setting up two conditions: pneumococcal infection and no infection, and constructing a mixed-effects model. After preprocessing the gene chip information, the data were imported into the model, preliminary results were calculated, and permutation tests were performed to biologically validate the preliminary results using GSEA. The final dataset consists of 20 groups of gene expression data from pneumococcal infection, which categorizes functionally related genes based on the similarity of their expression profiles, facilitating the study of genes with unknown functions.
文摘Lung cancer remains a significant global health challenge and identifying lung cancer at an early stage is essential for enhancing patient outcomes. The study focuses on developing and optimizing gene expression-based models for classifying cancer types using machine learning techniques. By applying Log2 normalization to gene expression data and conducting Wilcoxon rank sum tests, the researchers employed various classifiers and Incremental Feature Selection (IFS) strategies. The study culminated in two optimized models using the XGBoost classifier, comprising 10 and 74 genes respectively. The 10-gene model, due to its simplicity, is proposed for easier clinical implementation, whereas the 74-gene model exhibited superior performance in terms of Specificity, AUC (Area Under the Curve), and Precision. These models were evaluated based on their sensitivity, AUC, and specificity, aiming to achieve high sensitivity and AUC while maintaining reasonable specificity.
基金supported by the National Natural Science Foundation of China(Grant Number 62341210)Natural Science Foundation of Guangxi Province(Grant Number:2025GXNSFHA069267)Science and Technology Development Plan for Baise City(Grant Number 20233654).
文摘DNA microarrays, a cornerstone in biomedicine, measure gene expression across thousands to tens of thousands of genes. Identifying the genes vital for accurate cancer classification is a key challenge. Here, we present Fs-LSA (F-score based Learning Search Algorithm), a novel gene selection algorithm designed to enhance the precision and efficiency of target gene identification from microarray data for cancer classification. This algorithm is divided into two phases: the first leverages F-score values to prioritize and select feature genes with the most significant differential expression;the second phase introduces our Learning Search Algorithm (LSA), which harnesses swarm intelligence to identify the optimal subset among the remaining genes. Inspired by human social learning, LSA integrates historical data and collective intelligence for a thorough search, with a dynamic control mechanism that balances exploration and refinement, thereby enhancing the gene selection process. We conducted a rigorous validation of Fs-LSA’s performance using eight publicly available cancer microarray expression datasets. Fs-LSA achieved accuracy, precision, sensitivity, and F1-score values of 0.9932, 0.9923, 0.9962, and 0.994, respectively. Comparative analyses with state-of-the-art algorithms revealed Fs-LSA’s superior performance in terms of simplicity and efficiency. Additionally, we validated the algorithm’s efficacy independently using glioblastoma data from GEO and TCGA databases. It was significantly superior to those of the comparison algorithms. Importantly, the driver genes identified by Fs-LSA were instrumental in developing a predictive model as an independent prognostic indicator for glioblastoma, underscoring Fs-LSA’s transformative potential in genomics and personalized medicine.
文摘Gene expression data represents a condition matrix where each rowrepresents the gene and the column shows the condition. Micro array used todetect gene expression in lab for thousands of gene at a time. Genes encode proteins which in turn will dictate the cell function. The production of messengerRNA along with processing the same are the two main stages involved in the process of gene expression. The biological networks complexity added with thevolume of data containing imprecision and outliers increases the challenges indealing with them. Clustering methods are hence essential to identify the patternspresent in massive gene data. Many techniques involve hierarchical, partitioning,grid based, density based, model based and soft clustering approaches for dealingwith the gene expression data. Understanding the gene regulation and other usefulinformation from this data can be possible only through effective clustering algorithms. Though many methods are discussed in the literature, we concentrate onproviding a soft clustering approach for analyzing the gene expression data. Thepopulation elements are grouped based on the fuzziness principle and a degree ofmembership is assigned to all the elements. An improved Fuzzy clustering byLocal Approximation of Memberships (FLAME) is proposed in this workwhich overcomes the limitations of the other approaches while dealing with thenon-linear relationships and provide better segregation of biological functions.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number(RGP 2/42/43)This work was supported by Taif University Researchers Supporting Program(project number:TURSP-2020/200),Taif University,Saudi Arabia.
文摘In bioinformatics applications,examination of microarray data has received significant interest to diagnose diseases.Microarray gene expression data can be defined by a massive searching space that poses a primary challenge in the appropriate selection of genes.Microarray data classification incorporates multiple disciplines such as bioinformatics,machine learning(ML),data science,and pattern classification.This paper designs an optimal deep neural network based microarray gene expression classification(ODNN-MGEC)model for bioinformatics applications.The proposed ODNN-MGEC technique performs data normalization process to normalize the data into a uniform scale.Besides,improved fruit fly optimization(IFFO)based feature selection technique is used to reduce the high dimensionality in the biomedical data.Moreover,deep neural network(DNN)model is applied for the classification of microarray gene expression data and the hyperparameter tuning of the DNN model is carried out using the Symbiotic Organisms Search(SOS)algorithm.The utilization of IFFO and SOS algorithms pave the way for accomplishing maximum gene expression classification outcomes.For examining the improved outcomes of the ODNN-MGEC technique,a wide ranging experimental analysis is made against benchmark datasets.The extensive comparison study with recent approaches demonstrates the enhanced outcomes of the ODNN-MGEC technique in terms of different measures.
基金Supports from Special Fund for Agro-Scientific Research in the Public Interest in China (3-19) the National Transgenic Plants Project of China(2008ZX08005-004) are kindly appreciated
文摘For making better use of nucleic acid resources of Gossypium hirsutum, a data-mining method was used to identify putative genes responsive to various abiotic stresses in G. hirsutum. Based on the compiled database including genes involved in abiotic stress response in Arabidopsis thaliana and the comprehensive analysis tool of GENEVESTIGATOR v3, 826 genes up-regulated or down-regulated significantly in roots or leaves during salt or cold treatment in Arabidopsis were identified. As compared to these 826 Arabidopsis genes annotated, 38 homologous expressed sequence tags (ESTs) from G. hirsutum were selected randomly and their expression patterns were studied using a quantitative real-time reverse transcription-polymerase chain reaction method. Among these 38 ESTs, about 55% of the genes (21 of 38) were different in response to ABA between cotton and Arabidopsis, whereas 70% of genes had similar responses to cold and salt treatments, and some of them which had not been characterized in Arabidopsis are now being investigated in gene function studies. According to these results, this approach of analyzing ESTs appears effective in large-scale identification of cotton genes involved in abiotic stress and might be adopted to determine gene functions in various biologic processes in cotton.
基金Supported by Applied Basic Research Project of Yunnan Academy of Agricultural Sciences(YJM201801)Applied Basic Research Youth Project of Yunnan Province(2017FD015)Technical Innovation Talent Training Program of Yunnan Province(2015HB107)
文摘Gibberellins are an important class of plant hormones.They play an important regulatory role in all stages of growth and development of higher plants.The use of mutants to study gibberellin metabolism and signal transduction pathways is currently a research hotspot.This article takes the data of Affymetrix chips of rice as an example,bioinformatics method was used to study rice SLR1 mutant and mine differentially expressed wild-type genes,thus exploring the expression regulation network of gibberellin signaling pathway-related genes.
文摘In this paper, a similarity measure between genes with protein-protein interactions is pro-posed. The chip-chip data are converted into the same form of gene expression data with pear-son correlation as its similarity measure. On the basis of the similarity measures of protein- protein interaction data and chip-chip data, the combined dissimilarity measure is defined. The combined distance measure is introduced into K-means method, which can be considered as an improved K-means method. The improved K-means method and other three clustering methods are evaluated by a real dataset. Per-formance of these methods is assessed by a prediction accuracy analysis through known gene annotations. Our results show that the improved K-means method outperforms other clustering methods. The performance of the improved K-means method is also tested by varying the tuning coefficients of the combined dissimilarity measure. The results show that it is very helpful and meaningful to incorporate het-erogeneous data sources in clustering gene expression data, and those coefficients for the genome-wide or completed data sources should be given larger values when constructing the combined dissimilarity measure.
文摘The analysis of messenger Ribonucleic acid obtained through sequencing techniques (RNA-se- quencing) data is very challenging. Once technical difficulties have been sorted, an important choice has to be made during pre-processing: Two different paths can be chosen: Transform RNA- sequencing count data to a continuous variable or continue to work with count data. For each data type, analysis tools have been developed and seem appropriate at first sight, but a deeper analysis of data distribution and structure, are a discussion worth. In this review, open questions regarding RNA-sequencing data nature are discussed and highlighted, indicating important future research topics in statistics that should be addressed for a better analysis of already available and new appearing gene expression data. Moreover, a comparative analysis of RNAseq count and transformed data is presented. This comparison indicates that transforming RNA-seq count data seems appropriate, at least for differential expression detection.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(2018R1D1A1B07040282 to JJ)+1 种基金a grant from Kyung Hee University in 2018(KHU-20181065 to JJ)
文摘A Schwann cell has regenerative capabilities and is an important cell in the peripheral nervous system.This microarray study is part of a bioinformatics study that focuses mainly on Schwann cells. Microarray data provide information on differences between microarray-based and experiment-based gene expression analyses. According to microarray data, several genes exhibit increased expression(fold change) but they are weakly expressed in experimental studies(based on morphology, protein and mRNA levels). In contrast, some genes are weakly expressed in microarray data and highly expressed in experimental studies;such genes may represent future target genes in Schwann cell studies. These studies allow us to learn about additional genes that could be used to achieve targeted results from experimental studies. In the current big data study by retrieving more than 5000 scientific articles from PubMed or NCBI, Google Scholar, and Google, 1016(up-and downregulated) genes were determined to be related to Schwann cells. However,no experiment was performed in the laboratory; rather, the present study is part of a big data analysis. Our study will contribute to our understanding of Schwann cell biology by aiding in the identification of genes.Based on a comparative analysis of all microarray data, we conclude that the microarray could be a good tool for predicting the expression and intensity of different genes of interest in actual experiments.
文摘基因调控网络是基于微阵列基因表达数据,对基因之间表达关系依赖程度的一种仿真或重建。从基因表达数据挖掘基因之间存在的一定程度因果关系,对重构基因调控网络具有十分重要的意义。提出一种基于频繁原子序列关联熵的基因关联分析算法,通过基因关联熵有效识别基因之间的因果关系,并采用启发式搜索策略构建基因关联贝叶斯调控网络(gene association based Bayesian regulatory,GABR)。与基因贝叶斯网络描述基因表达水平值之间依赖关系不同,GABR是一种基因序列贝叶斯网络,基因关联分析对象是生物组织样本的基因表达值排序并置换为基因列下标所形成的序列。算法的优势在于基因变量取值原子序列,该基因为原子序列的结果,基因关联熵以及条件概率分布的计算更符合基因表达数据分析的生物本质特征。ALARM网络模拟数据的实验结果表明,基因关联分析算法性能明显优于同类算法。在酵母菌微阵列基因数据GDS2267和小鼠胚胎基因GSE76118等GEO数据集进行实验,测试结果表明GABR方法重构的基因调控网络具有较高的有效性和鲁棒性。