By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pur...By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pure Marchenko formalism without needing the usual scattering data except for given N simple poles. The one-and two-soliton solutions are given as two special examples in illustration of the general formula of multi-soliton solution. Their effectiveness and equivalence to other approaches are also demonstrated. Meanwhile,the asymptotic behavior of the multi-soliton solution is discussed in detail. It is shown that the N-soliton solution can be viewed as a summation of N one-soliton solutions with a definite displacement and phase shift of each soliton in the whole process(from t →∞ to t → +∞ ) of the elastic collisions.展开更多
In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustr...In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.展开更多
With a special gauge transformation,the Lax pair of the derivative nonlinear Shcrdinger (DNLS) equation turns to depend on the squared parameter λ = k2instead of the usual spec-tral parameter k. By introducing a new ...With a special gauge transformation,the Lax pair of the derivative nonlinear Shcrdinger (DNLS) equation turns to depend on the squared parameter λ = k2instead of the usual spec-tral parameter k. By introducing a new direct product of Jost solu-tions,the complete Hamiltonian theory of the DNLS equation is constructed on the basis of the squared spectral parameter,which shows that the integrability completeness is still preserved. This result will be beneficial to the further study of the DNLS equation,such as the direct perturbation method.展开更多
Using Hirota’s bilinear derivative method to derive single-breather solutions for the modified nonlinear Schrödinger(MNLS)equation and the derivative nonlinear Schrödinger(DNLS)equation under non-vanishing ...Using Hirota’s bilinear derivative method to derive single-breather solutions for the modified nonlinear Schrödinger(MNLS)equation and the derivative nonlinear Schrödinger(DNLS)equation under non-vanishing boundary conditions,along with explicit mixed solutions combining breather-type and pure solitons.The collision dynamics between pure and breather-type solitons in a mixed solution has been graphically demonstrated and ana-lyzed.Furthermore,by setting specific parameter to zero,we naturally ob-tain corresponding single-breather solution and its explicit mixed solutions with pure solitons for the DNLS equation.The mixed soliton solution can asymptotically degenerate into a simple algebraic summation of a simple pure soliton and a breather in the infinite past or the infinite future,which was graphically validated.展开更多
We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it ca...We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.展开更多
基金Supported by the National Natural Science Foundation of China (10775105)
文摘By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pure Marchenko formalism without needing the usual scattering data except for given N simple poles. The one-and two-soliton solutions are given as two special examples in illustration of the general formula of multi-soliton solution. Their effectiveness and equivalence to other approaches are also demonstrated. Meanwhile,the asymptotic behavior of the multi-soliton solution is discussed in detail. It is shown that the N-soliton solution can be viewed as a summation of N one-soliton solutions with a definite displacement and phase shift of each soliton in the whole process(from t →∞ to t → +∞ ) of the elastic collisions.
基金the Postdoctoral Fund of Huazhong University of Science and Technology under Grant No.0128011006
文摘In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.
基金Supported by the National Natural Science Foundation of China (10705022)
文摘With a special gauge transformation,the Lax pair of the derivative nonlinear Shcrdinger (DNLS) equation turns to depend on the squared parameter λ = k2instead of the usual spec-tral parameter k. By introducing a new direct product of Jost solu-tions,the complete Hamiltonian theory of the DNLS equation is constructed on the basis of the squared spectral parameter,which shows that the integrability completeness is still preserved. This result will be beneficial to the further study of the DNLS equation,such as the direct perturbation method.
文摘Using Hirota’s bilinear derivative method to derive single-breather solutions for the modified nonlinear Schrödinger(MNLS)equation and the derivative nonlinear Schrödinger(DNLS)equation under non-vanishing boundary conditions,along with explicit mixed solutions combining breather-type and pure solitons.The collision dynamics between pure and breather-type solitons in a mixed solution has been graphically demonstrated and ana-lyzed.Furthermore,by setting specific parameter to zero,we naturally ob-tain corresponding single-breather solution and its explicit mixed solutions with pure solitons for the DNLS equation.The mixed soliton solution can asymptotically degenerate into a simple algebraic summation of a simple pure soliton and a breather in the infinite past or the infinite future,which was graphically validated.
基金supported by grants from the National Science Foundation of China (10971031 11271079+2 种基金 11075055)Doctoral Programs Foundation of the Ministry of Education of Chinathe Shanghai Shuguang Tracking Project (08GG01)
文摘We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.