在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布...在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布谷鸟搜索算法与电导增量法相结合的混合MPPT控制。利用布谷鸟搜索算法快速全局寻优,再使用电导增量法精确定位,实现快速而准确地跟踪最大功率点。储能单元是光储直流微电网的重要组成部分,其输出电流均分、荷电状态(stateof charge, SoC)均衡和直流母线电压稳定是主要控制目标。但电流均分受线路电阻差异的影响,进而影响SoC均衡和直流母线电压稳定,于是设计一种新的电压电流双环控制策略以实现上述目标。该策略在电压外环采用母线电压作为反馈值,在电流内环中设计了基于一致性算法的控制策略,将SoC与指数函数结合并引入加速因子,使得在充放电过程中实现SoC的快速均衡。所提控制策略既不需要下垂控制,也无需二次补偿控制,减轻了通信负担。最后在Matlab/Simulink中搭建直流微电网系统模型,验证所设计新的混合MPPT控制和电压电流双环控制策略的有效性。展开更多
电力系统中不平衡与非线性负载会产生电压电流不平衡与谐波,从而影响一些关键设备的正常运行。为提升多台构网型GFM(grid-forming)变流器系统的电能质量,需在合理分配负载电流基波负序与谐波分量的同时,尽可能降低公共耦合点PCC(point o...电力系统中不平衡与非线性负载会产生电压电流不平衡与谐波,从而影响一些关键设备的正常运行。为提升多台构网型GFM(grid-forming)变流器系统的电能质量,需在合理分配负载电流基波负序与谐波分量的同时,尽可能降低公共耦合点PCC(point of common coupling)的电压不平衡与谐波。针对这一问题,提出了一种基于统一不平衡/谐波电压-电流下垂的构网型变流器电能质量控制策略。通过建立PCC电压与输出电流的基波负序及谐波分量的统一下垂关系,实现不平衡与谐波电流在各单元之间按容量分配,且同时抑制PCC电压的不平衡与谐波。该方案适用于多变流器在离网与并网2种模式,且不需对基波负序与各次谐波分别提取,相比于现有控制方法更加简单,更易于在嵌入式控制器中实现。详细讨论了该方法基于闭环极点分析的控制参数设计方案。通过与现有方法的对比分析,所提方法具有更优的动态性能与更少的计算需求。最后,实验结果验证了所提控制方案的有效性。展开更多
由于微电网中分布式电源的间歇性、非线性负荷增减频繁等原因,导致谐波能量变化较大,采用多台并联运行的有源电力滤波器APF(active power filter)能够对微电网谐波进行有效治理。然而,多台APF并联运行会因各APF补偿的电流不均而形成环流...由于微电网中分布式电源的间歇性、非线性负荷增减频繁等原因,导致谐波能量变化较大,采用多台并联运行的有源电力滤波器APF(active power filter)能够对微电网谐波进行有效治理。然而,多台APF并联运行会因各APF补偿的电流不均而形成环流,从而导致系统损耗增加。为此,本文提出1种基于电能信息一体化传输技术的均流控制方法,通过在逆变器功率调制环节加入信息调制,实现电能变换的同时传递关键信息,完成并联系统的均流控制。相较于传统的集中式、主从式控制方法,本文提出的方法无需额外的通信设备和通信线路,可进一步提高系统的可靠性、灵活性和可扩展性。通过RT-LAB仿真实验验证了所提均流控制方法的可行性与有效性。展开更多
文摘在光储孤岛直流微电网中,需要最大化利用光伏发电,通常对光伏系统采用最大功率点跟踪(maximum power point tracking, MPPT)技术。但传统的MPPT控制速度慢、精度低,特别是在局部阴影情形下极易陷入局部最优解。基于此,首先提出一种将布谷鸟搜索算法与电导增量法相结合的混合MPPT控制。利用布谷鸟搜索算法快速全局寻优,再使用电导增量法精确定位,实现快速而准确地跟踪最大功率点。储能单元是光储直流微电网的重要组成部分,其输出电流均分、荷电状态(stateof charge, SoC)均衡和直流母线电压稳定是主要控制目标。但电流均分受线路电阻差异的影响,进而影响SoC均衡和直流母线电压稳定,于是设计一种新的电压电流双环控制策略以实现上述目标。该策略在电压外环采用母线电压作为反馈值,在电流内环中设计了基于一致性算法的控制策略,将SoC与指数函数结合并引入加速因子,使得在充放电过程中实现SoC的快速均衡。所提控制策略既不需要下垂控制,也无需二次补偿控制,减轻了通信负担。最后在Matlab/Simulink中搭建直流微电网系统模型,验证所设计新的混合MPPT控制和电压电流双环控制策略的有效性。
文摘电力系统中不平衡与非线性负载会产生电压电流不平衡与谐波,从而影响一些关键设备的正常运行。为提升多台构网型GFM(grid-forming)变流器系统的电能质量,需在合理分配负载电流基波负序与谐波分量的同时,尽可能降低公共耦合点PCC(point of common coupling)的电压不平衡与谐波。针对这一问题,提出了一种基于统一不平衡/谐波电压-电流下垂的构网型变流器电能质量控制策略。通过建立PCC电压与输出电流的基波负序及谐波分量的统一下垂关系,实现不平衡与谐波电流在各单元之间按容量分配,且同时抑制PCC电压的不平衡与谐波。该方案适用于多变流器在离网与并网2种模式,且不需对基波负序与各次谐波分别提取,相比于现有控制方法更加简单,更易于在嵌入式控制器中实现。详细讨论了该方法基于闭环极点分析的控制参数设计方案。通过与现有方法的对比分析,所提方法具有更优的动态性能与更少的计算需求。最后,实验结果验证了所提控制方案的有效性。
文摘由于微电网中分布式电源的间歇性、非线性负荷增减频繁等原因,导致谐波能量变化较大,采用多台并联运行的有源电力滤波器APF(active power filter)能够对微电网谐波进行有效治理。然而,多台APF并联运行会因各APF补偿的电流不均而形成环流,从而导致系统损耗增加。为此,本文提出1种基于电能信息一体化传输技术的均流控制方法,通过在逆变器功率调制环节加入信息调制,实现电能变换的同时传递关键信息,完成并联系统的均流控制。相较于传统的集中式、主从式控制方法,本文提出的方法无需额外的通信设备和通信线路,可进一步提高系统的可靠性、灵活性和可扩展性。通过RT-LAB仿真实验验证了所提均流控制方法的可行性与有效性。