There are settings where encryption must be performed by a sender under a time constraint. This paper de-scribes an encryption/decryption algorithm based on modular arithmetic of complex integers called Gaus-sians. It...There are settings where encryption must be performed by a sender under a time constraint. This paper de-scribes an encryption/decryption algorithm based on modular arithmetic of complex integers called Gaus-sians. It is shown how cubic extractors operate and how to find all cubic roots of the Gaussian. All validations (proofs) are provided in the Appendix. Detailed numeric illustrations explain how to use the method of digital isotopes to avoid ambiguity in recovery of the original plaintext by the receiver.展开更多
In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation ...In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.展开更多
文摘There are settings where encryption must be performed by a sender under a time constraint. This paper de-scribes an encryption/decryption algorithm based on modular arithmetic of complex integers called Gaus-sians. It is shown how cubic extractors operate and how to find all cubic roots of the Gaussian. All validations (proofs) are provided in the Appendix. Detailed numeric illustrations explain how to use the method of digital isotopes to avoid ambiguity in recovery of the original plaintext by the receiver.
文摘In this paper, we derive two higher order multipoint methods for solving nonlinear equations. The methodology is based on Ostrowski’s method and further developed by using cubic interpolation process. The adaptation of this strategy increases the order of Ostrowski’s method from four to eight and its efficiency index from 1.587 to 1.682. The methods are compared with closest competitors in a series of numerical examples. Moreover, theoretical order of convergence is verified on the examples.