The evolution of the S'precipitate in Al−Cu−Mg alloy was investigated using transmission electron microscopy(TEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF−STEM),molecular dynam...The evolution of the S'precipitate in Al−Cu−Mg alloy was investigated using transmission electron microscopy(TEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF−STEM),molecular dynamics(MD)simulations,and other analytical techniques.The precipitation behavior during different aging stages of the supersaturated solid solution formed after rapid cold punching was focused,which induces rapid dissolution of precipitates.The findings reveal that the precipitation sequence is significantly influenced by aging temperature.At higher aging temperatures,which mitigate lattice distortion in the matrix,the precipitation sequence follows the conventional path.Conversely,at lower aging temperatures,where lattice distortion persists,the sequence deviates,suppressing the formation of Guinier−Preston−Bagaryatsky(GPB)zones.MD simulations confirm that the variations in solute atom diffusion rates at different aging temperatures lead to the differences in the S'phase precipitation sequence.展开更多
The microstructural evolution of Cu−19Ni−6Cr−7Mn alloy during aging treatment was investigated.After aging for 120 min at 500℃,the alloy exhibited excellent mechanical properties,including a tensile strength of 978 M...The microstructural evolution of Cu−19Ni−6Cr−7Mn alloy during aging treatment was investigated.After aging for 120 min at 500℃,the alloy exhibited excellent mechanical properties,including a tensile strength of 978 MPa and an elastic modulus of 145.8 GPa.After aging for 240 min at 500℃,the elastic modulus of the alloy reached 149.5 GPa,which was among the highest values reported for Cu alloys.It was worth mentioning that the tensile strength increased rapidly from 740 to 934 MPa after aging for 5 min at 500℃,which was close to the maximum tensile strength(978 MPa).Analysis of the underlying strengthening mechanisms and phase transformation behavior revealed that the Cu−19Ni−6Cr−7Mn alloy underwent spinodal decomposition and DO_(22) ordering during the first 5 min of aging at 500℃,and L1_(2) ordered phases and bcc-Cr precipitates appeared.Therefore,the enhanced mechanical properties of the Cu−19Ni−6Cr−7Mn alloy can be attributed to the stress field generated by spinodal decomposition and the presence of nanoscale ordered phase and Cr precipitates.展开更多
基金supported by the China Scholarship Council (CSC) Local Cooperation Program (No. 202308430176)the National Natural Science Foundation of China (No. 52271177)the Hunan Provincial Natural Science Foundation Regional Joint Fund, China (No. 2023JJ50173)。
文摘The evolution of the S'precipitate in Al−Cu−Mg alloy was investigated using transmission electron microscopy(TEM),high-angle annular dark-field scanning transmission electron microscopy(HAADF−STEM),molecular dynamics(MD)simulations,and other analytical techniques.The precipitation behavior during different aging stages of the supersaturated solid solution formed after rapid cold punching was focused,which induces rapid dissolution of precipitates.The findings reveal that the precipitation sequence is significantly influenced by aging temperature.At higher aging temperatures,which mitigate lattice distortion in the matrix,the precipitation sequence follows the conventional path.Conversely,at lower aging temperatures,where lattice distortion persists,the sequence deviates,suppressing the formation of Guinier−Preston−Bagaryatsky(GPB)zones.MD simulations confirm that the variations in solute atom diffusion rates at different aging temperatures lead to the differences in the S'phase precipitation sequence.
基金supported by the National Key R&D Program of China (No. 2021YFB3700700)the Henan Province Top Talent Training Program Project, China (No. 244500510020)the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences, China (No. 242017001)。
文摘The microstructural evolution of Cu−19Ni−6Cr−7Mn alloy during aging treatment was investigated.After aging for 120 min at 500℃,the alloy exhibited excellent mechanical properties,including a tensile strength of 978 MPa and an elastic modulus of 145.8 GPa.After aging for 240 min at 500℃,the elastic modulus of the alloy reached 149.5 GPa,which was among the highest values reported for Cu alloys.It was worth mentioning that the tensile strength increased rapidly from 740 to 934 MPa after aging for 5 min at 500℃,which was close to the maximum tensile strength(978 MPa).Analysis of the underlying strengthening mechanisms and phase transformation behavior revealed that the Cu−19Ni−6Cr−7Mn alloy underwent spinodal decomposition and DO_(22) ordering during the first 5 min of aging at 500℃,and L1_(2) ordered phases and bcc-Cr precipitates appeared.Therefore,the enhanced mechanical properties of the Cu−19Ni−6Cr−7Mn alloy can be attributed to the stress field generated by spinodal decomposition and the presence of nanoscale ordered phase and Cr precipitates.