期刊文献+
共找到255篇文章
< 1 2 13 >
每页显示 20 50 100
Effect of initial microstructure on performance and corrosion behavior of GH4169 superalloy joint produced by linear friction welding 被引量:1
1
作者 Xiawei YANG Tingxi MENG +5 位作者 Yu SU Rui XU Zhenguo GUO Yaxin XU Tiejun MA Wenya LI 《Chinese Journal of Aeronautics》 2025年第3期662-675,共14页
The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the micr... The pre-weld heat treatment was carried out to obtain different initial microstructures of the GH4169 superalloy,and then Linear Friction Welding(LFW)was performed.The effect of the pre-weld heat treatment on the microstructure evolution and mechanical properties of the joint was analyzed,and the joint electrochemical corrosion behavior as well as the hot corrosion behavior was studied.The results show that the joint hardness of Base Metal(BM)increases after pre-weld heat treatment,and the strengthening phasesγ′andγ″further precipitate.However,the precipitation phases dissolve significantly in the Weld Zone(WZ)due to the thermal process of LFW.The corrosion resistance in BM is reduced after the pre-weld heat treatment,while it is similar in WZ with a slight decrease.The surface morphology of the BM and WZ can be generally divided into a loose and porous matrix and a scattered oxide particle layer after hot corrosion.The joint cross section exhibits a Cr-depleted zone with the diffusion of Cr to form an oxide film.The corrosion product mainly consists of Fe_(2)O_(3)/Fe_(3)O_(4) as the outer layer and Cr_(2)O_(3) as the inner layer. 展开更多
关键词 Linear friction weldingi GH4169 superalloy Heat treatment Mechanical properties corrosion behavior
原文传递
Macroscopic environmental heterogeneity and corrosion behavior derived from in vitro degradation of pure magnesium and their in vivo investigation
2
作者 Lulu Zhang Kotaro Hanada Kazuhiro Kumagai 《Journal of Magnesium and Alloys》 2025年第7期3186-3197,共12页
Magnesium(Mg)alloys have attracted considerable attention as promising implant materials for biodegradable medical devices.In this study,we focused on investigating the effect of macroscopic environmental heterogeneit... Magnesium(Mg)alloys have attracted considerable attention as promising implant materials for biodegradable medical devices.In this study,we focused on investigating the effect of macroscopic environmental heterogeneity due to the degradation of Mg on its corrosion behavior.The immersion experiments using pure Mg plates,which were placed vertically in a culture medium(Dulbecco’s Modified Eagle’s Medium(DEME)+10%fetal bovine serum(FBS))for 1,5,and 10 days,were conducted.Surface analyses for the corrosion product layers and the measurements of the pH values and concentrations of eluted ions in the immersion medium around the upper and lower areas of the Mg plate were performed.The significant effect of the macroscopic environmental heterogeneity derived from Mg degradation on the corrosion behavior was demonstrated by in vitro tests.Additionally,the in vivo tests were carried out by implanting the pure Mg plates in the femur of rabbits.The in vivo results exhibited macroscopically heterogeneous Mg degradation,with areas of more severe corrosion compared to the in vitro test;it is especially noticeable during the early stage of degradation,even though the average corrosion rate was lower. 展开更多
关键词 Biodegradable Mg corrosion behavior In vitro In vivo Environmental heterogeneity corrosion product X-ray photoelectron spectroscopy MICRO-CT
在线阅读 下载PDF
Effect of gadolinium addition on microstructure, mechanical properties and corrosion behavior of titanium alloys for spent fuel storage and neutron shielding
3
作者 Jinying Li Ning Mao +8 位作者 Xiaowei Zhang Shuang Wang Fan Yang Wenli Lu Hongbo Yang Wensheng Yang Lu Zhang Daogao Wu Xinyu Guo 《Journal of Rare Earths》 2025年第9期1996-2004,共9页
Ti-Gd alloys with Gd contents of 2 wt%-8 wt% were prepared,and the influence of Gd content on the microstructure,mechanical properties,corrosion behavior,neutron absorption property and density of the alloy weas inves... Ti-Gd alloys with Gd contents of 2 wt%-8 wt% were prepared,and the influence of Gd content on the microstructure,mechanical properties,corrosion behavior,neutron absorption property and density of the alloy weas investigated.The micro structure changes from full lamellar α phase to fine equiaxed crystals,and the area fraction of Gd-rich phase decreases from 3.2% to 1.8% and then increases to 9.1%.Gd has three existing forms:pure Gd,compound oxide of Gd_(2)TiO_(5)and/or Gd_(2)O_(3)and solidifies in the Ti matrix.Ti-4Gd exhibits the best mechanical properties,its tensile strength and elongation is 102 MPa and 49%,respectively.The neutron transmittancy of Ti-8Gd alloy in water is the lowest,which is 3.75%.The corrosion rate of Ti-Gd alloy is 0.00097-0.00238 mm/a,which meets the corrosion standard of small-scale nuclear reactors and containers for spent fuel. 展开更多
关键词 Titanium-based alloy Rare earths MICROSTRUCTURE Mechanical properties corrosion behavior Neutron absorption
原文传递
Mechanical properties and corrosion behavior of hetero-structured lean Mg−1Bi−0.5Sn−0.5In alloy
4
作者 Hong-wei XU Wen-ting XU +6 位作者 Wei-li CHENG Jian LI Li-fei WANG Hui YU Jin-hui WANG Hua HOU Kwang Seon SHIN 《Transactions of Nonferrous Metals Society of China》 2025年第5期1440-1455,共16页
The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffra... The microstructural characterization,corrosion behavior and tensile properties of the extruded lean Mg−1Bi−0.5Sn−0.5In(wt.%)alloy were investigated through scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),X-ray photoelectron spectroscopy(XPS),electrochemical measurements and tensile tests.The results reveal that a microstructure consisting of dynamically recrystallized and deformed grains is obtained.Notably,the investigated alloy exhibits excellent strength−ductility synergy,with tensile yield strength(TYS),ultimate tensile strength(UTS)and elongation(EL)of 254.8 MPa,315.4 MPa,and 25.3%,respectively.Furthermore,in 3.5 wt.%NaCl solution,with the increase of immersion time,the dominant corrosion mechanism of the studied alloy transforms from pitting corrosion to filiform corrosion.After the immersion for 24 h,a composite oxide film(SnO2−Bi2O3−In2O3)is formed,which delays the corrosion process,and the corrosion rate(PH=1.53 mm/a)is finally stabilized. 展开更多
关键词 Mg alloy EXTRUSION corrosion behavior tensile properties strengthening mechanism
在线阅读 下载PDF
Microstructure evolution and corrosion behavior of TIG welded joint of a new Mg-Gd-Nd-Zn-Zr alloy during post-weld heat treatment
5
作者 Xin Tong Qiman Wang +3 位作者 Guohua Wu Fangzhou Qi Junmin Zhan Liang Zhang 《Journal of Magnesium and Alloys》 2025年第8期3798-3818,共21页
The corrosion behavior of the tungsten inert gas(TIG)welded Mg-3Nd-3Gd-0.2Zn-0.5Zr alloy with different post-weld heat treatments was systematically investigated.The results show that the corrosion resistance of the s... The corrosion behavior of the tungsten inert gas(TIG)welded Mg-3Nd-3Gd-0.2Zn-0.5Zr alloy with different post-weld heat treatments was systematically investigated.The results show that the corrosion resistance of the sand-cast base material(BM)was inferior to that of the fusion zone(FZ),which was attributed to the larger grain size and exacerbated galvanic corrosion caused by coarser Mg_3(Nd,Gd)eutectic phases and numerousβprecipitates.It is found that post-weld solid-solution(T4)treatment could significantly enhance the corrosion resistance of the joint due to the dissolution of the cathodic second phases and the denser protective film abundant in RE oxides generated in corrosive solution.The precipitation of nanosized phases and Zn-Zr clusters would slightly increase the susceptibility to localized corrosion of the peak-aged(T6) joint.As the main corrosion products,MgO and Mg(OH)_(2) are distributed throughout the whole corrosion film,while RE oxides and RE hydroxides are mainly distributed in the inner layer,which can be explained by inward oxidation and replacement reactions between RE elements and MgO/Mg(OH)_(2).Based on the composition and structure of the corrosion product film,a physical model has been proposed for depicting the microstructure evolution associated with the corresponding corrosion behavior of the joints.This work could promote the applications of welded Mg-RE alloy joint in some corrosion environments. 展开更多
关键词 TIG welding Mg-Gd-Nd alloy Heat treatment Microstructure evolution corrosion behavior
在线阅读 下载PDF
Comparison of Hot Corrosion Behavior of Ni_(36)Fe_(34)Al_(17)Cr_(10)Mo_(1)Ti_(2)and Ni_(34)Co_(25)Fe_(12)Al_(15)Cr_(12)W_(2)Alloys in NaCl-KCl-Na_(2)SO_(4)Salt
6
作者 Xiaoming Liu Fengyang Quan +6 位作者 Yuan Gao Shaodong Zhang Jianbin Wang Zhijun Wang Junjie Li Feng He Jincheng Wang 《Acta Metallurgica Sinica(English Letters)》 2025年第2期205-217,共13页
Hot corrosion in molten salt is a complex process,involving both chemical corrosion and electrochemical corrosion.Interfacial reactions and oxide dissolution can also impact the corrosion results.Compared with single ... Hot corrosion in molten salt is a complex process,involving both chemical corrosion and electrochemical corrosion.Interfacial reactions and oxide dissolution can also impact the corrosion results.Compared with single component/type salt,multicomponent/type hot corrosion leads to more severe degradation,while the multi-component alloys offer potential chances for developing anti-corrosion metallic materials.In this study,we aim to elucidate the hot corrosion behavior and gain a better understanding of the corrosion mechanism of the multi-component alloys under multi-component/type NaCl-KCl-Na_(2)SO_(4)salt.The corrosion behavior of dual-phaseNi_(36)Fe_(34)Al_(17)Cr_(10)Mo_(1)Ti_(2)(HEA-1)and Ni_(34)Co_(25)Fe_(12)Al_(15)Cr_(12)W_(2)(HEA-2)alloys was studied within NaCl-KCl-Na_(2)SO_(4)molten salt with mass ratios of 5:5:1 and 5:5:2.After exposure to the salt at 650°C for 168 h,it was found that the Ni_(34)Co_(25)Fe_(12)Al_(15)Cr_(12)W_(2)exhibited better corrosion resistance thanNi_(36)Fe_(34)Al_(17)Cr_(10)Mo_(1)Ti_(2).The improved performance of Ni_(30)Co_(25)Fe_(12)Al_(15)Cr_(12)W_(2)alloy was attributed to the Co element,which facilitated the formation of dense oxides scale and enhanced scale adhesion.Alkali chlorides with stronger penetration ability dominated the corrosion process and alkali sulfate further aggravated the corrosion.The primary corrosion mechanisms involved in this process were identified as“electrochemical mechanism”attacking the body-centered cubic structure in the alloys and“active oxidation”causing dissolution of the alloy elements. 展开更多
关键词 Multi-component salt corrosion behavior Interfacial reaction Oxide scale corrosion mechanism
原文传递
Effect of Cl^(–)and SO_(4)^(2–)concentration in bicarbonate solutions on corrosion behavior of Cu
7
作者 Cheng-tao Li Li-jun Song +4 位作者 Zhong Liu Hong-qun Liu Jing Wan Shu-gang Zhang Qian-wu Li 《Journal of Iron and Steel Research International》 2025年第9期3046-3057,共12页
The effect of Cl^(–)and SO_(4)^(2–)on corrosion behavior of pure copper in simulated groundwater was investigated by electrochemical testing techniques,scanning electron microscope/energy dispersive spectroscopy,X-r... The effect of Cl^(–)and SO_(4)^(2–)on corrosion behavior of pure copper in simulated groundwater was investigated by electrochemical testing techniques,scanning electron microscope/energy dispersive spectroscopy,X-ray photoelectron spectroscopy,and X-ray diffraction in 0.1 mol/L NaHCO_(3)solutions.The results indicate that increasing Cl^(-)and SO_(4)^(2–)reduces the corrosion resistance of Cu.Cl^(-)and SO_(4)^(2–)can promote anodic dissolution of Cu and deteriorate the passivation property.The breakdown potential(Eb)of Cu decreases with the increase in Cl^(-)and SO_(4)^(2–).With the increase in immersion time,the polarization resistance in different solutions tends to be stable.After 55 days,polarization resistance(Rp)was almost equal in 0 and 0.01 mol/L Cl^(-)and SO_(4)^(2–)solutions.In 0.05 mol/L Cl^(-)and SO_(4)^(2−)solution,Rp was lower.HCO3–has a certain corrosion effect on Cu and the pits size increased with the increase in Cl^(-)and SO_(4)^(2–).The corrosion products(Cu_(2)(OH)_(2)CO_(3))and CuO were detected in solutions without or at low Cl^(-)and SO_(4)^(2–)contents.The corrosion product after immersion in the solution containing 0.05 mol/L Cl^(-)and SO_(4)^(2–)was Cu_(2)O. 展开更多
关键词 Copper(Cu) corrosion behavior Breakdown potential Electrochemical impendence spectroscopy BICARBONATE
原文传递
Corrosion behavior and life prediction of SAC305 solder joints in PVC fire smoke
8
作者 Meng-ke ZHAO Jian-rui FENG +2 位作者 Qian LI Shou-xiang LU Jin LIN 《Transactions of Nonferrous Metals Society of China》 2025年第2期538-551,共14页
The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation wer... The corrosion behavior and life of Sn−3.0Ag−0.5Cu solder joints were investigated through fire smoke exposure experiments within the temperature range of 45−80℃.The nonlinear Wiener process and Arrhenius equation were used to establish the probability distribution function and prediction model of the solder joint’s average life and individual remaining useful life.The results indicate that solder joint resistance shows a nonlinear growth trend with time increasing.After 24 h,the solder joint transforms from spherical to rose-like shapes.Higher temperatures accelerate solder joint failure,and the relationship between failure time and temperature conforms to the Arrhenius equation.The predicted life of the model is in good agreement with experimental results,demonstrating the effectiveness and accuracy of the model. 展开更多
关键词 solder joints fire smoke corrosion behavior electrical performance degradation life prediction model
在线阅读 下载PDF
In Vitro Corrosion Behavior and Mechanical Property of Novel Mg-Sn-In-Ga Alloys for Orthopedic Applications
9
作者 Jing Wang Xuejian Wang +3 位作者 Zongning Chen Huijun Kang Tongmin Wang Enyu Guo 《Acta Metallurgica Sinica(English Letters)》 2025年第3期353-366,共14页
This study develops novel Mg-Sn-In-Ga alloys as potential implant materials for orthopedic applications.The corrosion behavior of the Mg-Sn-In-Ga alloys was studied through mass loss measurements,hydrogen evolution me... This study develops novel Mg-Sn-In-Ga alloys as potential implant materials for orthopedic applications.The corrosion behavior of the Mg-Sn-In-Ga alloys was studied through mass loss measurements,hydrogen evolution measurements,electrochemical analysis,and corrosion morphology observations.The results show that the corrosion rate of the Mg-1Sn-1In-1Ga alloy was only 0.10±0.003 mm/y after immersion in Hank’s solution for 15 days.This outstanding corrosion resistance was associated with the protective efect of the corrosion products.The increase in the Sn and Ga element content led to the precipitation of a large amount of Mg_(2)Sn and Mg_(5)Ga_(2),which had a dominant efect on the corrosion rate in the Mg-5Sn-1In-2Ga alloy.These precipitates increased the current density and detached from the alloy surface during the corrosion process.This can lead to a weakened protective efect of the corrosion layer,and thus generate localized corrosion and an increase in the corrosion rate.The strength of the Mg-5Sn-1In-2Ga alloy was enhanced due to fne-grain strengthening and precipitation strengthening.The ultimate tensile strength and yield strength of the Mg-5Sn-1In-2Ga alloy were~309 MPa and~253 MPa,respectively. 展开更多
关键词 Mg-Sn-In-Ga alloy corrosion behavior Electrochemical measurements Mechanical properties
原文传递
Effect of secondary phases on corrosion behavior of Mg−7Sn−1Zn−1Y alloys
10
作者 Xue-jian WANG Hua-qiang XIAO +3 位作者 Chong WANG En-yu GUO Tong-min WANG Bo LIN 《Transactions of Nonferrous Metals Society of China》 2025年第2期446-459,共14页
Microstructural characterization,mass loss tests,hydrogen evolution tests,electrochemical measurements,and corrosion morphology observations were conducted to investigate the effect of the secondary phases on the corr... Microstructural characterization,mass loss tests,hydrogen evolution tests,electrochemical measurements,and corrosion morphology observations were conducted to investigate the effect of the secondary phases on the corrosion behavior of the as-cast Mg−7Sn−1Zn−1Y(TZW711)alloy after solution treatment(T4)and aging treatment(T6).The results show that the T4-TZW711 alloy possesses the highest corrosion resistance in the early corrosion stage.This is because the dissolution of Mg2Sn reduces the cathodic current density and increases the charge transfer resistance(Rct).When the corrosion time is prolonged,the undissolved and clustered MgSnY phase will peel off from the T4-TZW711 alloy surface,thereby increasing the corrosion rate of the alloy.After aging treatment,the undissolved MgSnY phase is dispersed,which results in a lower localized corrosion sensitivity of T6-TZW711 alloy than that of the T4-TZW711 alloy,suggesting that the T6 treatment can enhance the corrosion resistance of Mg−7Sn−1Zn−1Y alloys. 展开更多
关键词 Mg−Sn−Zn−Y alloy heat treatment MgSnY phase electrochemical test corrosion behavior
在线阅读 下载PDF
Microstructural evolution and its influence on mechanical and corrosion behaviors in a high-Al/Zn containing duplex Mg-Li alloy after friction stir processing 被引量:4
11
作者 Yixing Zhu Mengran Zhou +7 位作者 Yingxin Geng Shun Zhang Tongzheng Xin Gaoqiang Chen Yifan Zhou Xiaoyu Zhou Ruizhi Wu Qingyu Shi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期245-255,共11页
Ultralight Mg-Li alloys offer promising applications across various fields.Mg-Li alloys enriched with Al and Zn hold theoretical potential for achieving excellent mechanical strength and corrosion resistance.However,t... Ultralight Mg-Li alloys offer promising applications across various fields.Mg-Li alloys enriched with Al and Zn hold theoretical potential for achieving excellent mechanical strength and corrosion resistance.However,the structural and performance characteristics of such Mg-Li alloys,particularly after thermo-mechanical processing,remain inadequately explored and understood.This study investigated the mi-crostructural evolution of a Mg-9Li-5Al-4Zn alloy after friction stir processing and its consequent effects on the mechanical and corrosion performance.The grain size of the alloy was effectively refined and sta-bilized during friction stir processing at various heat inputs.The yield strength of the alloy increased by 86.4%after friction stir processing under the highest heat input condition,which was attributed to fine grain strengthening,solid solution strengthening and dispersion strengthening.Concurrently,the alloy ex-perienced a slight decrease in elongation after the friction stir processing.The alloy subjected to friction stir processing with the highest heat input exhibited a minimal corrosion current density of 6.10×10^(−6) A/cm^(2),which was only 25%of the base metal.The enhanced anti-corrosion properties can be attributed to the dispersion and distribution of precipitated particles induced by friction stir processing,which hin-dered the micro-galvanic corrosion and promoted the generation of a compact surface film,leading to minimal and uniform corrosion.This investigation can be significant for understanding the metallurgical mechanisms and performance evolution of Mg-Li alloys during thermomechanical processes. 展开更多
关键词 Mg-Li-Al-Zn alloy Friction stir processing Microstructure evolution Thermal-mechanical stability corrosion behavior
原文传递
Corrosion behaviors and kinetics of nanoscale zero-valent iron in water:A review 被引量:3
12
作者 Chenliu Tang Xingyu Wang +2 位作者 Yufei Zhang Nuo Liu Xiang Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期391-406,共16页
Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing... Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications.Herein,this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water.Firstly,Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion.The morphological,structural,and compositional evolution of(modified-)nZVI under different environmental conditions,assisted with microscopic and spectroscopic evidence,is then summarized.Afterwards,common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water.Specifically,stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed,emphasizing their capabilities in studying the dynamic iron corrosion processes.Finally,in the future,more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties.We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment. 展开更多
关键词 Nanoscale zero-valent iron(nZVI) corrosion behaviors corrosion kinetics nZVI evolution
原文传递
Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying 被引量:2
13
作者 Yun Tian Jianing Liu +5 位作者 Mingming Xue Dongyao Zhang Yuxin Wang Keping Geng Yanchun Dong Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2692-2705,共14页
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega... FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines. 展开更多
关键词 high-entropy alloy coatings plasma spray mechanical alloying microstructure corrosion behavior mechanical property
在线阅读 下载PDF
Effect of La on the Corrosion Behavior and Mechanism of 3Ni Weathering Steel in a Simulated Marine Atmospheric Environment 被引量:2
14
作者 Gang Niu Rui Yuan +6 位作者 R.D.K.Misra Na Gong Zhi-Hui Zhang Hao-Xiu Chen Hui-Bin Wu Cheng-Jia Shang Xin-Ping Mao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第2期308-324,共17页
The corrosion behavior and mechanism of 3Ni weathering steel in a simulated oceanic atmospheric environment are investigated in order to comprehend the impacts of La,as determined through electrochemical analysis and ... The corrosion behavior and mechanism of 3Ni weathering steel in a simulated oceanic atmospheric environment are investigated in order to comprehend the impacts of La,as determined through electrochemical analysis and rust layer characterization.The results of this study demonstrate that the addition of La enhances the corrosion resistance of 3Ni weathering steel in the marine atmospheric environment,thereby reducing the corrosion rate and improving the protection of the rust layer.The influence of La on corrosion resistance can be attributed to two primary factors.Firstly,La functions as a grain refiner,minimizing the potential difference of the micro-regions on the substrate surface,thereby significantly reducing the corrosion of bare steel in the marine environment.Secondly,La inhibits the process of Fe_(3)O_(4) oxidation back toγ-FeOOH during corrosion at the local site,thus decreasing the formation ofγ-FeOOH and enhancing the charge transfer resistance.This research work may serve as a reference for expanding the application of rare earth elements in the field of weathering steel. 展开更多
关键词 Weathering steel Rare earth Rust layer corrosion behavior corrosion resistance
原文传递
Effect of linear friction welding process on microstructure evolution,mechanical properties and corrosion behavior of GH4169 superalloy 被引量:1
15
作者 Yu SU Xiawei YANG +5 位作者 Tingxi MENG Dong WU Rui XU Haiyu XU Wenya LI Shuo YIN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第6期504-520,共17页
Linear Friction Welding(LFW)technology was used to realize the welding of GH4169 superalloy,and the effect of welding parameters on the microstructure,mechanical properties and corrosion behavior of the joint was anal... Linear Friction Welding(LFW)technology was used to realize the welding of GH4169 superalloy,and the effect of welding parameters on the microstructure,mechanical properties and corrosion behavior of the joint was analyzed.The results show that there is a positive correlation between the weld hardness and the tensile strength.With the gradual increase of heat input and welding pressure,the joint quality is gradually improved,but the heat affected zone is not significantly increased.The smaller the grain size of the weld,the higher the strength and plasticity of the joint.With the increase of the joint shortening amount,the corrosion resistance of the weld first gradually increases.However,when the shortening reaches a certain level,the corrosion resistance of the joint becomes little changed.With the increase of solution temperature,the corrosion current density increases and the polarization impedance decreases.The higher the corrosion temperature,the worse the corrosion resistance of the joint.There is no significant correlation between the joint strength and the corrosion resistance.The corrosion resistance of the joint can be enhanced without changing the joint mechanical properties by reducing the welding frequency and amplitude or increasing the welding pressure. 展开更多
关键词 Linear Friction Welding(LFW) GH4169 superalloy MICROSTRUCTURE Mechanical properties corrosion behavior
原文传递
Influence of Micro/Nano-Ti Particles on the Corrosion Behavior of AZ31-Ti Composites 被引量:1
16
作者 Jinchao Jiao Jin Zhang +3 位作者 Yong Lian Shengli Han Kaihong Zheng Fusheng Pan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第3期484-498,共15页
Adding Ti particles to magnesium alloy simultaneously enhances its strength and ductility.However,how these particles influence on Mg alloy’s corrosion performance is seldom reported.The corrosion behavior of AZ31-Ti... Adding Ti particles to magnesium alloy simultaneously enhances its strength and ductility.However,how these particles influence on Mg alloy’s corrosion performance is seldom reported.The corrosion behavior of AZ31-Ti composites containing titanium nanoparticles(1.5 and 5 wt%)and micron particles(10 wt%)prepared by powder metallurgical in 3.5 wt%NaCl solution was investigated.The results indicate that Ti particles serve as the primary location for the cathodic hydrogen reduction reaction,resulting in intense galvanic corrosion between the Ti and Mg matrix.Ti nanoparticles distributed at the interface of the original AZ31 powder were in a discontinuous mesh structure,thus failing to act as a barrier against corrosion.The corrosion products with the existence of numerous cracks gradually peel off during the corrosion process and cannot protect the matrix.The average corrosion rate P_(w) of AZ31,AZ31-1.5%Ti,AZ31-5%Ti,and AZ31-10%Ti after 7 days of immersion is 27.55,105.65,283.67,and 99.35 mm/y,respectively.Therefore,AZ31-Ti composites can be considered as potential candidates for degradable fracturing tools.Otherwise,it is recommended to improve their corrosion resistance through surface treatment. 展开更多
关键词 AZ31-Ti composite NANO-TI MICRO-TI corrosion behavior Scanning Kelvin probe force microscopy(SKPFM)
原文传递
Effect of Compression Passes on Mechanical Properties and Corrosion Behavior of ZK60 Magnesium Alloy
17
作者 Yin Dongsong Liu Zhiyuan +2 位作者 Zhang Youyou Mao Yong Han Tianming 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2024年第12期3338-3347,共10页
The impact of multi-directional compression passes on the microstructure,mechanical properties,and corrosion behavior of ZK60 magnesium alloy was investigated.Results reveal that severe dendrite segregation exists in ... The impact of multi-directional compression passes on the microstructure,mechanical properties,and corrosion behavior of ZK60 magnesium alloy was investigated.Results reveal that severe dendrite segregation exists in the as-cast ZK60 magnesium alloy with coarse MgZn phases distributed along the grain boundaries.After 9 passes of compression,the coarse solidified phases at the grain boundary are significantly refined,and back dissolution occurs.Fine recrystallized grains accompanied with the fine diffused nano-phases emerge in the local area around the large grains.The tensile strength of ZK60 magnesium alloy generally exhibits the upward trend with the increase in compression passes,whereas the compression rate shows the downward trend.The compressive strength reaches 433.6 MPa with the compression rate of 21.3%after 9 passes of compression.Multi-directional compression can significantly reduce the degradation rate of ZK60 magnesium alloy in simulated body fluids.Furthermore,it is observed that in the ascast ZK60 magnesium alloy,micro-segregation can easily lead to severe intragranular local corrosion.However,after multidirectional compression,the tendency to intragranular local corrosion is significantly diminished. 展开更多
关键词 ZK60 magnesium alloy multi-directional compression compression passes mechanical property corrosion behavior
原文传递
Effect of Rolling Temperature on the Mechanical Properties and Corrosion Behavior of Mg-Zn-Y-Nd Alloy Thin Sheets
18
作者 Zhibin Liu Guangya Zhu +5 位作者 Wenkai Li Di Mei Peihua Du Yufeng Sun Shijie Zhu Shaokang Guan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第10期1721-1734,共14页
There is a growing demand for degradable membranes with sufficient mechanical properties to guide tissue regeneration in dental surgery.In the present work,a two-stage rolling process in which the first rolling stage(... There is a growing demand for degradable membranes with sufficient mechanical properties to guide tissue regeneration in dental surgery.In the present work,a two-stage rolling process in which the first rolling stage(FRS)adopted a reduction rate of 30%for six passes at various temperatures,while the second rolling stage was rolling at 200℃for two passes,was employed to prepare a 150μm-grade Mg-2.0Zn-0.5Y-0.5Nd(ZE21B)Mg alloy sheets for guided tissue regeneration membrane.The microstructure of the thin sheets was gradually refined with increasing rolling passes,and the thin sheets that were rolled at different FRS temperatures exhibit an ellipse texture.The thin sheets rolled at 350℃for FRS show low elongation due to premature fracture caused by the coarse second phase particles.On account of uniform and fine grains,the thin sheets rolled at 400℃for the FRS have proper mechanical properties:yield strength of 214.6±8.5 MPa,ultimate tensile strength(UTS)of 246.8±10.3 MPa and elongation to failure of 28.3±1.2%.When rolling at 450℃for FRS,proper ductility of the thin sheets has been acquired,followed by a decline in UTS since a bimodal structure with fine and coarse grain was developed.Immersion tests demonstrated the FRS temperature had no significant effect on the corrosion behavior and corrosion rate of Mg alloy sheets after 7 days’immersion in artificial saliva solution.This research has great significance for the production of degradable Mg sheets for guided tissue regeneration membrane. 展开更多
关键词 Mg alloy thin sheets Two-stage rolling Guided tissue regeneration membrane Artificial saliva corrosion behavior
原文传递
Corrosion behavior of 2A97 Al-Cu-Li alloys in different thermomechanical conditions by quasi-in-situ analysis
19
作者 You Lü Xiang-zhe MENG +2 位作者 Yan-yan LI Ze-hua DONG Xin-xin ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2772-2786,共15页
As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stor... As a promising material in the aircraft industry,2A97 Al-Cu-Li alloy exhibits high corrosion susceptibility that may limit its application.In the present work,to illustrate the influences of precipitate and grain-stored energy on localized corrosion evolution in 2A97 Al-Cu-Li alloy,cold working and artificial aging were carried out to produce 2A97 Al-Cu-Li alloys under different thermomechanical conditions.Quasi-in-situ analysis,traditional immersion test and electrochemical measurement were then conducted to examine the corrosion behavior of 2A97 alloys.It is revealed that precipitate significantly affects Cu enrichment at corrosion fronts,which determines corrosion susceptibility of alloys,whereas grain-stored energy distribution is closely associated with localized corrosion propagation.It is also indicated that quasi-in-situ analysis exhibits a consistent corrosion evolution with traditional immersion tests,which is regarded as a proper method to explore localized corrosion mechanisms by providing local microstructural information with enhanced time and spatial resolutions. 展开更多
关键词 Al−Cu−Li alloy corrosion behavior quasi-in situ analysis grain-stored energy thermomechanical treatment
在线阅读 下载PDF
Effects of Environmental Factors on Corrosion Behavior of E690 Steel in Simulated Marine Environment
20
作者 Jingjing Peng Jing Liu +3 位作者 Shen Zhang Zhihui Wang Xian Zhang Kaiming Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第4期678-694,共17页
The effects of hydrostatic pressure, dissolved oxygen, temperature and flow velocity, and their interaction on the corrosion rates of E690 high-strength steel (HSS) in simulated marine environments were studied using ... The effects of hydrostatic pressure, dissolved oxygen, temperature and flow velocity, and their interaction on the corrosion rates of E690 high-strength steel (HSS) in simulated marine environments were studied using response surface methodology. The results show that the flow velocity exerts the most significant influence on the corrosion rate of E690 HSS. Consequently, the corrosion behavior of E690 HSS under varying flow velocities were analyzed profoundly from initial pitting corrosion to long-term corrosion properties. The results indicate that the flow state facilitates the mass transfer and enhances the adsorption tendency of Cl− by enhancing the electrochemical activity of the steel surface. These factors accelerate the electrochemical reactions, resulting in increased pitting density, depth and the long-term corrosion rates in dynamic seawater environments. 展开更多
关键词 E690 steel Simulated marine environment corrosion behavior Flow velocity Response surface methodology(RSM)
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部