期刊文献+
共找到2,014篇文章
< 1 2 101 >
每页显示 20 50 100
Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury 被引量:2
1
作者 Fanzhuo Zeng Yuxin Li +6 位作者 Xiaoyu Li Xinyang Gu Yue Cao Shuai Cheng He Tian Rongcheng Mei Xifan Mei 《Neural Regeneration Research》 2026年第1期365-376,共12页
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s... Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury. 展开更多
关键词 ANGIOGENESIS apoptosis brain-derived neurotrophic factor colony stimulating factor 1 receptor inflammation MICROGLIA motor function spinal cord injury vascular endothelial growth factor
暂未订购
Multi-target neural circuit reconstruction and enhancement in spinal cord injury 被引量:1
2
作者 Lingyun Cao Siyun Chen +2 位作者 Shuping Wang Ya Zheng Dongsheng Xu 《Neural Regeneration Research》 2026年第3期957-971,共15页
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim... After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions. 展开更多
关键词 multi-targets nerve root magnetic stimulation neural circuit NEUROMODULATION peripheral nerve stimulation RECONSTRUCTION spinal cord injury task-oriented training TIMING transcranial magnetic stimulation
暂未订购
Recording of spared motor evoked potentials and its augmentation by 4-aminopyridine in chronic spinal cord-injured rats
3
作者 余科炜 李家顺 +5 位作者 戎伟芳 贾连顺 袁文 叶晓健 石志才 戴伯军 《Chinese Medical Journal》 SCIE CAS CSCD 2001年第2期43-49,106-107,共9页
Objective To research the direct electrophysiological evidence of discomplete spinal cord injury (SCI) and the effect of 4-aminopyridine on it.Methods Motor evoked potentials (MEPs), both spinal cord recorded MEPs (... Objective To research the direct electrophysiological evidence of discomplete spinal cord injury (SCI) and the effect of 4-aminopyridine on it.Methods Motor evoked potentials (MEPs), both spinal cord recorded MEPs (scMEPs) and extracellularly recorded MEPs (exMEPs) were recorded and characterized on a T13 epidural electrode (scMEPs) and an extracellular microelectrode (exMEPs) for 10 normal rats and 40 rats with lesions of various severity (sham, 35?g*cm force (gcf), 70?gcf, 100?gcf impact injury) at the T8-T9 cord using the Allen's drop model. The incline plane and Tarlov techniques were used to assess clinical neurological function. Results MEPs in the normal rats were elicited by applying transcortical suprathreshold stimulation consisting of 3-4 early negative peaks (N1, N2, N3 and N4) followed by several late waves. The N1 and N2 peaks were largest in the anterior and ventrolateral funiculus, respectively, which was indicative of extrapyramidal pathways. The 100?gcf impact injuries and the cord transection abolished the MEP distal to the lesion, whereas the 35?gcf injuries resulted in a latency shift and amplitude decrement of the MEP peaks. Eighteen of the 20 rats with 70?gcf injuries showed clinical paraplegia. Among them, 7 rats had neurophysiological evidence of residual conduction pathways through the lesioned cord segment, such as the presence of N1 and N2 peaks in the scMEPs or exMEPs. After 4-aminopyridine (4-AP) administrations (1?mg/kg), the amplitude of the spared exMEP increased significantly and spread more widely. Conclusions MEPs evoked by transcortical stimulation travel mostly in the extrapyramidal tract. MEP monitoring could provide an excellent method of detecting the functional integrity of the motor tracts after SCI, and could even detect spared motor fibers after discomplete SCI. Furthermore, the use of 4-AP or other K+ channel blocking agents may be a potential treatment for patients with chronic moderate to severe SCI. 展开更多
关键词 motor evoked potential · microelectrode · discomplete spinal cord injury · 4 aminopyridine · rat
原文传递
Human spinal cord organoids:A powerful tool to redefine gray matter and lower motor neuron pathophysiology in spinal cord injury
4
作者 Maria Jose Quezada Colin K.Franz 《Neural Regeneration Research》 2026年第5期2001-2002,共2页
Human spinal cord organoids(hSCOs)offer a promising platform to study neurotrauma by addressing many limitations of traditional research models.These organoids provide access to human-specific physiological and geneti... Human spinal cord organoids(hSCOs)offer a promising platform to study neurotrauma by addressing many limitations of traditional research models.These organoids provide access to human-specific physiological and genetic mechanisms and can be derived from an individual's somatic cells(e.g.,blood or skin).This enables patient-specific paradigms for precision neurotrauma research,pa rticula rly relevant to the over 300,000 people in the United States living with chronic effects of spinal cord injury(SCI). 展开更多
关键词 human spinal cord organoids study neurotrauma spinal cord injury human spinal cord organoids hscos offer somatic cells egblood spinal cord traditional research modelsthese NEUROTRAUMA
暂未订购
Neuronal swelling implicated in functional recovery after spinal cord injury
5
作者 Qiang Li 《Neural Regeneration Research》 2026年第4期1558-1559,共2页
Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathop... Spinal cord injury(SCI) often results in permanent dysfunction of locomotion,sensation,and autonomic regulation,imposing a substantial burden on both individuals and society(Anjum et al.,2020).SCI has a complex pathophysiology:an initial primary injury(mechanical trauma,axonal disruption,and hemorrhage) is followed by a progressive secondary injury cascade that involves ischemia,neuronal loss,and inflammation.Given the challenges in achieving regeneration of the injured spinal cord,neuroprotection has been at the forefront of clinical research. 展开更多
关键词 spinal cord injury SENSATION neuronal swelling autonomic regulation functional recovery PATHOPHYSIOLOGY spinal cord injury sci locomotion
暂未订购
Are emerging electroconductive biomaterials for spinal cord injury repair the future?
6
作者 Aleksandra Serafin Maurice N.Collins 《Neural Regeneration Research》 2026年第3期1140-1141,共2页
Spinal cord injury(SCI)is a debilitating ailment that leads to the loss of motor and sensory functions,often leaving the patient paralyzed below the injury site(Chen et al.,2013).Globally around 250,000-300,000 people... Spinal cord injury(SCI)is a debilitating ailment that leads to the loss of motor and sensory functions,often leaving the patient paralyzed below the injury site(Chen et al.,2013).Globally around 250,000-300,000 people are diagnosed with SCI annually(Singh et al.,2014),and while this number appears quite low,the effect that an SCI has on the patient’s quality of life is drastic,due to the current difficulties to comprehensively treat this illness.The cost of patient care can also be quite costly,amounting to an estimated$1.69 billion in healthcare costs in the USA alone(Mahabaleshwarkar and Khanna,2014). 展开更多
关键词 spinal cord injury PARALYSIS electroconductive biomaterials healthcare costs sensory functions motor functions repair spinal cord injury sci
暂未订购
Chromatin accessibility regulates axon regeneration
7
作者 Isa Samad Brett J.Hilton 《Neural Regeneration Research》 2026年第4期1548-1549,共2页
Central nervous system(CNS) axons fail to regenerate following brain or spinal cord injury(SCI),which typically leads to permanent neurological deficits.Peripheral nervous system axons,howeve r,can regenerate followin... Central nervous system(CNS) axons fail to regenerate following brain or spinal cord injury(SCI),which typically leads to permanent neurological deficits.Peripheral nervous system axons,howeve r,can regenerate following injury.Understanding the mechanisms that underlie this difference is key to developing treatments for CNS neurological diseases and injuries characterized by axonal damage.To initiate repair after peripheral nerve injury,dorsal root ganglion(DRG) neurons mobilize a pro-regenerative gene expression program,which facilitates axon outgrowth. 展开更多
关键词 peripheral nerve injurydorsal root ganglion drg central nervous system nervous system developing treatments spinal cord injury chromatin accessibility central nervous system cns spinal cord
暂未订购
Photoacoustic technologies in nervous system disorders:An emerging strategy for neuromodulation
8
作者 Chenyuan Ding Penghao Liu +6 位作者 Zhuofan Xu Yuanchen Cheng Han Yu Lei Cheng Zan Chen Fengzeng Jian Wanru Duan 《Neural Regeneration Research》 2026年第5期1910-1925,共16页
Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modalit... Spinal cord injury is a severe neurological disorder;however,current treatment methods often fail to restore nerve function effectively.Spinal cord stimulation via electrical signals is a promising therapeutic modality for spinal cord injury.Based on similar principles,this review aims to explore the potential of optical and acoustic neuromodulation techniques,emphasizing their benefits in the context of spinal cord injury.Photoacoustic imaging,renowned for its noninvasive nature,high-resolution capabilities,and cost-effectiveness,is well recognized for its role in early diagnosis,dynamic monitoring,and surgical guidance in stem cell therapies for spinal cord injury.Moreover,photoacoustodynamic therapy offers multiple pathways for tissue regeneration.Optogenetics and sonogenetics use genetic engineering to achieve precise neuronal activation,while photoacoustoelectric therapy leverages photovoltaic materials for electrical modulation of the nervous system,introducing an innovative paradigm for nerve system disorder management.Collectively,these advancements represent a transformative shift in the diagnosis and treatment of spinal cord injury,with the potential to significantly enhance nerve function remodeling and improve patient outcomes. 展开更多
关键词 NEUROMODULATION OPTOGENETICS photoacoustic imaging photoacoustodynamic therapy spinal cord injury
暂未订购
Enhancing neural stem cell integration in the injured spinal cord through targeted PTEN modulation
9
作者 Simay Geniscan Hee Hwan Park +6 位作者 Hyung Soon Kim Seokjin Yoo Hyunmi Kim Byeong Seong Jang Dong Hoon Hwang Kevin K Park Byung Gon Kim 《Neural Regeneration Research》 2026年第4期1586-1594,共9页
Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival a... Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.Here,we investigated whether modifying the intrinsic properties of neural stem cells could enhance their integration post-transplantation.We focused on phosphatase and tensin homolog(PTEN),a well-characterized tumor suppressor known to critically regulate neuronal survival and axonal regeneration.By deleting Pten in mouse neural stem cells,we observed increased neurite outgrowth and enhanced resistance to neurotoxic environments in culture.Upon transplantation into injured spinal cords,Pten-deficient neural stem cells exhibited higher survival and more extensive rostrocaudal distribution.To examine the potential influence of partial PTEN suppression,rat neural stem cells were treated with short hairpin RNA targeting PTEN,and the PTEN knockdown resulted in significant improvements in neurite growth,survival,and neurosphere motility in vitro.Transplantation of sh PTEN-treated neural stem cells into the injured spinal cord also led to an increase in graft survival and migration to an extent similar to that of complete deletion.Moreover,PTEN suppression facilitated neurite elongation from NSC-derived neurons migrating from the lesion epicenter.These findings suggest that modifying intrinsic signaling pathways,such as PTEN,within neural stem cells could bolster their therapeutic efficacy,offering potential avenues for future regenerative strategies for spinal cord injury. 展开更多
关键词 graft axon growth graft survival neural stem cell PTEN regeneration spinal cord injury transplantation
暂未订购
Mitophagy:A key regulator in the pathophysiology and treatment of spinal cord injury
10
作者 Qiuyang Gu Shengye Yuan +7 位作者 Yumei An Wenyue Sun Mingyuan Xu Mengchun Xue Xianzhe Li Chao Liu Haiyan Shan Mingyang Zhang 《Neural Regeneration Research》 2026年第4期1396-1408,共13页
Mitophagy is closely associated with the pathogenesis of secondary spinal cord injury.Abnormal mitophagy may contribute significantly to secondary spinal cord injury,leading to the impaired production of adenosine tri... Mitophagy is closely associated with the pathogenesis of secondary spinal cord injury.Abnormal mitophagy may contribute significantly to secondary spinal cord injury,leading to the impaired production of adenosine triphosphate,ion imbalance,the excessive production of reactive oxygen species,neuroinflammation,and neuronal cell death.Therefore,maintaining an appropriate balance of mitophagy is crucial when treating spinal cord injury,as both excessive and insufficient mitophagy can impede recovery.In this review,we summarize the pathological changes associated with spinal cord injury,the mechanisms of mitophagy,and the direct and indirect relationships between mitophagy and spinal cord injury.We also consider therapeutic approaches that target mitophagy for the treatment of spinal cord injury,including ongoing clinical trials and other innovative therapies,such as use of stem cells,nanomaterials,and small molecule polymers.Finally,we highlight the current challenges facing this field and suggest potential directions for future research.The aim of our review is to provide a theoretical reference for future studies targeting mitophagy in the treatment of spinal cord injury. 展开更多
关键词 ATP production disorders cell death mitochondria MITOPHAGY NEUROINFLAMMATION NEUROPROTECTION oxidative stress secondary injury spinal cord injury treatment
暂未订购
A single-cell landscape of the regenerating spinal cord of zebrafish
11
作者 Lei Yao Xinyi Cai +5 位作者 Saishuai Yang Yixing Song Lingyan Xing Guicai Li Zhiming Cui Jiajia Chen 《Neural Regeneration Research》 2026年第2期780-789,共10页
Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types ... Unlike mammals,zebrafish possess a remarkable ability to regenerate their spinal cord after injury,making them an ideal vertebrate model for studying regeneration.While previous research has identified key cell types involved in this process,the underlying molecular and cellular mechanisms remain largely unexplored.In this study,we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish.Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury,while molecular signals promoting growth cone collapse were inhibited.Radial glial cells exhibited significant proliferation and differentiation potential post injury,indicating their intrinsic roles in promoting neurogenesis and axonal regeneration,respectively.Additionally,we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury,creating a microenvironment permissive for tissue repair and regeneration.Furthermore,oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury.These findings demonstrated that the rapid and orderly regulation of inflammation,as well as the efficient proliferation and redifferentiation of new neurons and glial cells,enabled zebrafish to reconstruct the spinal cord.This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration,offering promising avenues for future research and therapeutic strategies. 展开更多
关键词 dividing oligodendrocyte macrophage MICROGLIA neuron proliferating oligodendrocyte radial glia single cell sequencing spinal cord regeneration transcriptome ZEBRAFISH
暂未订购
Trends in the application of chondroitinase ABC in injured spinal cord repair
12
作者 Zhongqing Ji Jiangfeng Zhu +3 位作者 Jinming Liu Bin Wei Yixin Shen Yanan Hu 《Neural Regeneration Research》 2026年第4期1304-1321,共18页
Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and... Spinal cord injuries have overwhelming physical and occupational implications for patients.Moreover,the extensive and long-term medical care required for spinal cord injury significantly increases healthcare costs and resources,adding a substantial burden to the healthcare system and patients'families.In this context,chondroitinase ABC,a bacterial enzyme isolated from Proteus vulgaris that is modified to facilitate expression and secretion in mammals,has emerged as a promising therapeutic agent.It works by degrading chondroitin sulfate proteoglycans,cleaving the glycosaminoglycanchains of chondroitin sulfate proteoglycans into soluble disaccharides or tetrasaccharides.Chondroitin sulfate proteoglycans are potent axon growth inhibitors and principal constituents of the extracellular matrix surrounding glial and neuronal cells attached to glycosaminoglycan chains.Chondroitinase ABC has been shown to play an effective role in promoting recovery from acute and chronic spinal cord injury by improving axonal regeneration and sprouting,enhancing the plasticity of perineuronal nets,inhibiting neuronal apoptosis,and modulating immune responses in various animal models.In this review,we introduce the classification and pathological mechanisms of spinal cord injury and discuss the pathophysiological role of chondroitin sulfate proteoglycans in spinal cord injury.We also highlight research advancements in spinal cord injury treatment strategies,with a focus on chondroitinase ABC,and illustrate how improvements in chondroitinase ABC stability,enzymatic activity,and delivery methods have enhanced injured spinal cord repair.Furthermore,we emphasize that combination treatment with chondroitinase ABC further enhances therapeutic efficacy.This review aimed to provide a comprehensive understanding of the current trends and future directions of chondroitinase ABC-based spinal cord injury therapies,with an emphasis on how modern technologies are accelerating the optimization of chondroitinase ABC development. 展开更多
关键词 axonal regeneration chondroitin sulfate proteoglycans chondroitinase ABC combination treatments delivery methods enzymatic activity glycosaminoglycan chains spinal cord injury stability
暂未订购
Corrigendum
13
《Neural Regeneration Research》 2026年第4期1276-1276,共1页
In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Rese... In the article titled“Inhibiting SHP2 reduces glycolysis,promotes microglial M1 polarization,and alleviates secondary inflammation following spinal cord injury in a mouse model,”published in Neural Regeneration Research(Ding et al.,2025),the title was incorrectly presented due to an error during the language polishing process. 展开更多
关键词 language polishing process spinal cord injury reduces neural regeneration research ding INHIBITING mouse model published microglial m polarizationand SHP
暂未订购
Generation and clearance of myelin debris after spinal cord injury
14
作者 Chaoyuan Li Wenqi Luo +6 位作者 Irshad Hussain Renrui Niu Xiaodong He Chunyu Xiang Fengshuo Guo Wanguo Liu Rui Gu 《Neural Regeneration Research》 2026年第4期1512-1527,共16页
Traumatic spinal cord injury often leads to the disintegration of nerve cells and axons,resulting in a substantial accumulation of myelin debris that can persist for years.The abnormal buildup of myelin debris at site... Traumatic spinal cord injury often leads to the disintegration of nerve cells and axons,resulting in a substantial accumulation of myelin debris that can persist for years.The abnormal buildup of myelin debris at sites of injury greatly impedes nerve regeneration,making the clearance of debris within these microenvironments crucial for effective post-spinal cord injury repair.In this review,we comprehensively outline the mechanisms that promote the clearance of myelin debris and myelin metabolism and summarize their roles in spinal cord injury.First,we describe the composition and characteristics of myelin debris and explain its effects on the injury site.Next,we introduce the phagocytic cells involved in myelin debris clearance,including professional phagocytes(macrophages and microglia)and non-professional phagocytes(astrocytes and microvascular endothelial cells),as well as other cells that are also proposed to participate in phagocytosis.Finally,we focus on the pathways and associated targets that enhance myelin debris clearance by phagocytes and promote lipid metabolism following spinal cord injury.Our analysis indicates that myelin debris phagocytosis is not limited to monocyte-derived macrophages,but also involves microglia,astrocytes,and microvascular endothelial cells.By modulating the expression of genes related to phagocytosis and lipid metabolism,it is possible to modulate lipid metabolism disorders and influence inflammatory phenotypes,ultimately affecting the recovery of motor function following spinal cord injury.Additionally,therapies such as targeted mitochondrial transplantation in phagocytic cells,exosome therapy,and repeated trans-spinal magnetic stimulation can effectively enhance the removal of myelin debris,presenting promising potential for future applications. 展开更多
关键词 foam cells lipid droplets lipid metabolism MACROPHAGES MICROGLIA myelin debris myelin proteins myelin sheath nerve regeneration PHAGOCYTOSIS spinal cord injury
暂未订购
Role of mitophagy in spinal cord ischemia-reperfusion injury
15
作者 Yanni Duan Fengguang Yang +7 位作者 Yibao Zhang Mingtao Zhang Yujun Shi Yun Lang Hongli Sun Xin Wang Hongyun Jin Xuewen Kang 《Neural Regeneration Research》 2026年第2期598-611,共14页
Spinal cord ischemia-reperfusion injury,a severe form of spinal cord damage,can lead to sensory and motor dysfunction.This injury often occurs after traumatic events,spinal cord surgeries,or thoracoabdominal aortic su... Spinal cord ischemia-reperfusion injury,a severe form of spinal cord damage,can lead to sensory and motor dysfunction.This injury often occurs after traumatic events,spinal cord surgeries,or thoracoabdominal aortic surgeries.The unpredictable nature of this condition,combined with limited treatment options,poses a significant burden on patients,their families,and society.Spinal cord ischemia-reperfusion injury leads to reduced neuronal regenerative capacity and complex pathological processes.In contrast,mitophagy is crucial for degrading damaged mitochondria,thereby supporting neuronal metabolism and energy supply.However,while moderate mitophagy can be beneficial in the context of spinal cord ischemia-reperfusion injury,excessive mitophagy may be detrimental.Therefore,this review aims to investigate the potential mechanisms and regulators of mitophagy involved in the pathological processes of spinal cord ischemia-reperfusion injury.The goal is to provide a comprehensive understanding of recent advancements in mitophagy related to spinal cord ischemia-reperfusion injury and clarify its potential clinical applications. 展开更多
关键词 BNIP3 BNIP3L/NIX FUNDC1 MECHANISM MITOCHONDRIA MITOPHAGY modulators PARKIN PINK1 spinal cord ischemia-reperfusion injury
暂未订购
Preclinical safety and efficacy evaluation of the intrathecal transplantation of GMP-grade human umbilical cord mesenchymal stem cells for ischemic stroke
16
作者 Zejia Huang Jiaohua Jiang +6 位作者 Qingxia Peng Mengzhi Jin Yakun Dong Xuejia Li Ermei Luo Haijia Chen Yidong Wang 《Neural Regeneration Research》 2026年第3期1172-1182,共11页
Intrathecal administration of human umbilical cord mesenchymal stem cells may be a promising approach for the treatment of stroke,but its safety,effectiveness,and mechanism remain to be elucidated.In this study,good m... Intrathecal administration of human umbilical cord mesenchymal stem cells may be a promising approach for the treatment of stroke,but its safety,effectiveness,and mechanism remain to be elucidated.In this study,good manufacturing practice-grade human umbilical cord mesenchymal stem cells(5×105 and 1×106 cells)and saline were administered by cerebellomedullary cistern injection 72 hours after stroke induced by middle cerebral artery occlusion in rats.The results showed(1)no significant difference in mortality or general conditions among the three groups.There was no abnormal differentiation or tumor formation in various organs of rats in any group.(2)Compared with saline-treated animals,those treated with human umbilical cord mesenchymal stem cells showed significant functional recovery and reduced infarct volume,with no significant differences between different human umbilical cord mesenchymal stem cell doses.(3)Human umbilical cord mesenchymal stem cells were found in the ischemic brain after 14 and 28 days of follow-up,and the number of positive cells significantly decreased over time.(4)Neuronal nuclei expression in the human umbilical cord mesenchymal stem cell group was greater than that in the saline group,while glial fibrillary acidic protein and ionized calcium binding adaptor molecule 1 expression levels decreased.(5)Human umbilical cord mesenchymal stem cell treatment increased the number of CD31+microvessels and doublecortin-positive cells after ischemic stroke.Human umbilical cord mesenchymal stem cells also upregulated the expression of CD31+/Ki67+.(6)At 14 days after intrathecal administration,brain-derived neurotrophic factor expression in the peri-infarct area and the concentrations of brain-derived neurotrophic factor in the cerebrospinal fluid in both human umbilical cord mesenchymal stem cell groups were significantly greater than those in the saline group and persisted until the 28th day.Taken together,these results indicate that the intrathecal administration of human umbilical cord mesenchymal stem cells via cerebellomedullary cistern injection is safe and effective for the treatment of ischemic stroke in rats.The mechanisms may include alleviating the local inflammatory response in the peri-infarct region,promoting neurogenesis and angiogenesis,and enhancing the production of neurotrophic factors. 展开更多
关键词 ANGIOGENESIS brain-derived neurotrophic factor efficacy human umbilical cord mesenchymal stem cells intrathecal transplantation ischemic stroke neural cell NEUROGENESIS safety
暂未订购
Spinal cord injury and inflammatory mediators:Role in“fire barrier”formation and potential for neural regeneration
17
作者 Mi Zhou Zhengyu Xu +2 位作者 Hao Zhong Guangzhi Ning Shiqing Feng 《Neural Regeneration Research》 2026年第3期923-937,共15页
Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim... Traumatic spinal cord injury result in considerable and lasting functional impairments,triggering complex inflammatory and pathological events.Spinal cord scars,often metaphorically referred to as“fire barriers,”aim to control the spread of neuroinflammation during the acute phase but later hinder axon regeneration in later stages.Recent studies have enhanced our understanding of immunomodulation,revealing that injury-associated inflammation involves various cell types and molecules with positive and negative effects.This review employs bibliometric analysis to examine the literature on inflammatory mediators in spinal cord injury,highlighting recent research and providing a comprehensive overview of the current state of research and the latest advances in studies on neuroinflammation related to spinal cord injury.We summarize the immune and inflammatory responses at different stages of spinal cord injury,offering crucial insights for future research.Additionally,we review repair strategies based on inflammatory mediators for the injured spinal cord.Finally,this review discusses the current status and future directions of translational research focused on immune-targeting strategies,including pharmaceuticals,biomedical engineering,and gene therapy.The development of a combined,precise,and multitemporal strategy for the repair of injured spinal cords represents a promising direction for future research. 展开更多
关键词 axon regeneration bibliometric analysis central nervous system chronic phase conditioning lesion paradigm glia scar immunomodulatory pharmaceutics inflammatory mediator NEUROINFLAMMATION spinal cord injury zebrafish
暂未订购
Tracing motor neurons and primary sensory afferents of the monkey spinal cord with cholera toxin subunit B
18
作者 Ziyu He Zhixian Liu +4 位作者 Wenjie Xu Ruoying Zhang Shu Fan Wei Wang Xiaolong Zheng 《Neural Regeneration Research》 2026年第5期2040-2049,共10页
Nonhuman primates are increasingly being used as animal models in neuroscience research.However,efficient neuronal tracing techniques for labeling motor neurons and primary sensory afferents in the monkey spinal cord ... Nonhuman primates are increasingly being used as animal models in neuroscience research.However,efficient neuronal tracing techniques for labeling motor neurons and primary sensory afferents in the monkey spinal cord are lacking.Here,by injecting the cholera toxin B subunit into the sciatic nerve of a rhesus monkey,we successfully labeled the motor neurons and primary sensory afferents in the lumbar and sacralspinal cord.Labeled alpha motor neurons were located in lamina IX of the L6–S1 segments,which innervate both flexors and extensors.The labeled primary sensory afferents were mainly myelinated Aβfibers that terminated mostly in laminae I and II of the L4–L7 segments.Together with the labeled proprioceptive afferents,the primary sensory afferents formed excitatory synapses with multiple types of spinal neurons.In summary,our methods successfully traced neuronal connections in the monkey spinal cord and can be used in spinal cord studies when nonhuman primates are used. 展开更多
关键词 cholera toxin subunit B INTERNEURON Macaca Mulatta MONKEY motor neuron neuron tracing primary sensory afferents rhesus macaque sciatic nerve spinal cord
暂未订购
Role of the medullary reticular formation in motor control and functional recovery following spinal cord injury
19
作者 Frederic Bretzner 《Neural Regeneration Research》 2026年第3期1138-1139,共2页
Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are... Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are incomplete and spare supraspinal pathways,especially those located within the peripheral white matter of the spinal cord,which includes reticulospinal pathways originating from the medullary reticular formation.Whereas there is abundant literature about the motor cortex,its corticospinal pathway,and its capacity to modulate functional recovery after SCI,less is known about the medullary reticular formation and its reticulospinal pathway. 展开更多
关键词 spinal cord injury sci interrupts supraspinal pathwaysespecially peripheral white matter motor cortexits spinal cordthus corticospinal pathway spinal cordwhich reticulospinal pathways
暂未订购
Functional central nervous system regeneration:Challenges from axons to circuits
20
作者 Apolline Delaunay Mickael Le Boulc’h +1 位作者 Stephane Belin Homaira Nawabi 《Neural Regeneration Research》 2026年第5期1983-1984,共2页
The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzh... The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth. 展开更多
关键词 parkinsons disease unlocking axon regrowth neurodegenerative diseases central nervous system cnscomposed functional regeneration axon regrowth spinal cord lesions central nervous system
暂未订购
上一页 1 2 101 下一页 到第
使用帮助 返回顶部